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Preface xi

Preface

It is always fascinating to learn how our mind works. We are very 
grateful that research on cognitive psychology has illuminated us 
to understand how we construct new knowledge. This book aims to 
describe human cognitive architecture and its implication on learning. 
While the cognitive system can be used for explaining learning in many 
domains, this book provides examples for mathematics. Particularly, 
this book was written in an attempt to describe the main feature of 
information processing system, including how we are able to learn, store 
and apply knowledge. 

As it can be found in this book, our knowledge is organized in 
working memory and then stored into long term memory. A cognitive 
load theory explains that to avoid random generation of meaning when 
learning novel or complex material, borrowing knowledge that is already 
available in the other’s long term memory is advantageous yet directive 
to efficient learning. This book may be considered as the representation 
of the author’s long term memory, which the knowledge written in this 
book can be borrowed by the reader to understand human cognitive 
architecture, cognitive load effects, and the instructional implications.
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This book is currently being used as the main reference for a course 
namely Psychology of Mathematics Learning I taught at Universitas 
Negeri Yogyakarta. This course is studied by bachelor and masters 
students (in mathematics education), as the prerequisite of a course, 
namely Method of Mathematics Learning. Indeed, knowing how 
knowledge is constructed will facilitate a clear direction to instructors 
or teachers that when teaching a learning material, any unproductive 
cognitive process should be minimized.

Lastly, I have been learning this domain for more than ten years, and 
I have to admit that there are many things I have not fully understood, 
and left me space to advance my study or research based on the theory. 
I am deeply in-debt to Professor John Sweller and Professor Paul Ayres 
who supervised me during my masters and doctorate degrees. Both of 
them taught me not only the knowledge that I have written in this 
book, but also how to develop the theory, in particular how to derive 
principles of learning based on the cognitive load theory. I cannot thank 
you enough for the great support and the opportunity I have had so far. 

	 Yogyakarta, April 2019

	 Endah Retnowati
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Chapter I

Introduction

Psychology of mathematics learning

Psychology is a science that has been introduced since very long 
time ago. It lies between biology and culture that specifically explores 
the causes of thought, act, and behavior. Educational psychology is 
one of the branches that narrow the science of psychology into the 
educational field. The scope of educational psychology can be cognitive 
development, physical development, social and moral development, 
motivation, intelligence, individual differences, cognitive processes, 
testing, measurement and assessment as well as classroom teaching. The 
educational psychology that is specified on cognition is usually called  
psychology of learning. Scientists in this field attempt to uncover the 
process of learning and thinking as well as how this affects learners' 
behaviour.

Mathematics as knowledge or a school subject has its own character 
that might differ from the others. Basically it has objects that are 
structurally rigid in patterns and relations. It might become an open 
thought of connections between mathematical objects too. Its objects 
are mostly a result of abstractions that are represented in symbols and 
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notations. Therefore, mathematics cognition should be based on these 
characters in order to construct knowledge and therefore facilitate 
learning. Accordingly, the psychology of mathematics learning is a 
specific of psychology science on mathematics cognition.

Meaningful learning

In behavior psychology view, learning is often defined as a 
permanent change of behavior and hence, learning activity is focused 
on giving feedback or reward to stimulate change of behavior. However, 
this definition has been doubted by many cognitive psychologists. 
In cognitive psychology view, learning is defined as an activity of 
knowledge construction that changes the structure of previously acquired 
knowledge. Sweller (1999) defines learning as restructuring knowledge 
in long term memory where we hold knowledge permanently. It can be 
argued that eventually knowledge constructed by learners might affect 
not only their thought but also changes of their acts or behavior.

According to the outcome, learning can be distinguished into two: 
rote learning and meaningful learning. Through rote learning, a learner 
might not understand deeply the material since the acquisition is not 
accompanied by an effort to link among elements of learning material. A 
learner simply memorizes them. Although memorizing some elements 
is important to learning, learning is not in- depth. Learners might not 
fully understand the meaning and the use of the knowledge.

On the other hand, through meaningful learning, a learner puts 
some efforts to understand the learning material deeply. Understanding 
is reached by linking materials to be learned with previously learned 
knowledge. In addition to this, Mayer (1999) emphasizes that the critical 
role of learning is to facilitate the transfer of skill, that is the ability 
of a learner not only to construct knowledge but to apply knowledge 
into problem solving. Furthermore, it is mentioned that transfer of 
knowledge occurs when a learner possesses well-structured knowledge 
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in which relevant element of knowledge are closely connected. This 
could occur when meaningful learning is facilitated.

The above discussion indicates the importance of our knowledge on 
cognitive architecture and thus meaningful learning occurs. Learning 
itself indeed involves activities in our memory system and therefore it 
should be used as the ground on creating effective and efficient learning 
instructions.

This book specifically covers cognitive psychology perspective on 
learning mathematics meaningfully. The following chapters include how 
our cognition works during knowledge construction and how effective 
mathematics knowledge construction can be facilitated.
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Chapter II

Human Cognitive Architecture

Human cognitive architecture refers to the structure of human 
memory and its functions when processing information, learning and 
problem solving (Sweller, 2003). There are three major components of 
memory: sensory memory, working memory and long-term memory. 
Cognitive activities such as how learners acquire and automate 
knowledge, solve problems, and develop expertise are reviewed in the 
second section.

Human Memory

The human memory system is often considered an information 
processing system. To describe how information is processed and 
organised in different memory stages, the modal model is historically 
considered a useful guide.

The modal model
An early version of the modal model was developed by Waugh and 

Norman (1965), who partitioned human memory into two independent 
memory systems: primary and secondary memory (see Figure 1). A key 
feature was that rehearsal in primary memory enabled stimuli to be 
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encoded into secondary memory. In this model, primary memory was 
assumed to have limited capacity and, as a consequence, most incoming 
stimuli if unrehearsed were forgotten.

Figure 1. The primary and secondary memory system (Waugh & Norman, 1965, p. 93)

Shiffrin and Atkinson (1969) developed a more complex model, 
commonly referred to as the modal model. This model separated the 
memory system into a short- term store and long-term store, and 
included a sensory register which was the first part of the memory 
system to receive information from the environment (see Figure 2). The 
short-term store controlled the flow of information from the sensory 
register into the short-term store and eventually into the long-term 
store. The control process involved activities such as analysing incoming 
stimuli, activating rehearsal, searching and retrieving strategies, and 
altering, modifying, encoding and transferring mechanisms between 
the different memory systems (Shiffrin & Atkinson, 1969).
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Figure 2. The flow chart of the memory system, adapted from Shiffrin 
and Atkinson (1969, p. 180). Solid lines describe path of information 

transfer, broken lines illustrate paths of control activities.

R.C. Atkinson and Shiffrin (1971) later revised their modal model 
as a unified system by placing the control process inside the short-
term store (see Figure 3). It was assumed that the short-term store was 
central to the cognitive system, playing the major role in information 
processing, such as rehearsing, encoding, and retrieving strategies.

Figure 3. The information flow (R.C. Atkinson & Shiffrin, 1971, p. 82)
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These early models provided a general idea of how memory works 
and how information flows between the different memory components. 
Other researchers (e.g., Baddeley, 1992, 2002; Ericsson & Kintsch, 
1995) have built on these and developed more sophisticated models 
that more closely match the various cognitive processes that occur when 
humans learn and solve problems. Nevertheless, many memory models 
recognise that there are three major components to human memory, 
which are described in more detail in the following sections.

Sensory memory
Sensory memory is assumed to be the first memory system that 

holds stimuli received from the environment (R. C. Atkinson & Shiffrin, 
1968). We have five sensory registers (e.g., sight, hearing, smell, taste, 
touch) that detect stimuli from the environment. However, most of the 
research into sensory memory has focused on visual and auditory stimuli. 
By allocating attention or cognitive resources, sensory memory perceives 
incoming stimuli (R. C. Atkinson & Shiffrin, 1968). Prior knowledge 
stored in long term memory allows sensory memory to recognise 
patterns of stimuli (pattern recognition) which, once recognised, is 
assigned meaning in the short-term store (Cowan, 2005). To illustrate, 
when we read these letters, because we have prior knowledge about 
scripts, sensory memory through the visual sense will recognise these 
letters as scripts. We also know that scripts have meaning and we must 
pay attention to them. Therefore sensory memory encodes and transfers 
the stimuli (scripts) into working memory to construct their meaning.

A major feature of sensory memory is that it has a severely limited 
capacity and duration (Darwin, Turvey, & Crowder, 1972; Sperling, 
1960; von Wright, 1972).The visual and auditory sensory registers have 
been extensively investigated. Sperling (1960), as well as von Wright 
(1972), demonstrated that the visual register (iconic store) is able 
to hold only a limited number of visual stimuli (e.g., a set of letters, 
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numbers or icons) for a fraction of a second, and once the cue (sight) 
has disappeared, the number of stimuli retained by the visual sensory 
register rapidly decreases over time. Darwin et al. (1972) found that the 
auditory register (echo store) is also only able to hold a limited number 
of auditory stimuli (e.g., spoken letters) for a few seconds (i.e., less than 
3 seconds) and then the number decreases as soon as the cue (echo) 
disappears.

The limitation of sensory memory has specific consequences, in that 
sensory memory is seldom able to perceive every incoming stimulus 
or transfer every stimulus into working memory. Unattended stimuli 
in sensory memory are quickly forgotten (R. C. Atkinson & Shiffrin, 
1968, 1969; Waugh & Norman, 1965). As the environment changes 
rapidly, any memory stored is soon replaced by new stimuli.

In summary, sensory memory involves perception, pattern 
recognition and the assignment of meaning using prior knowledge stored 
in long-term memory. Its limited capacity and duration dictate that, at 
any given time, only a limited amount of stimuli can be perceived by a 
learner. If assignment of meaning is made, then stimuli are transferred 
into working memory.

Working memory
Baddeley and Hitch (1974) introduced the term working memory 

to replace the terms primary memory or short-term memory used by R. 
C. Atkinson and Shiffrin (1968, 1971). It was argued that the function 
of this memory component was not simply to provide a temporary 
store for information, but also to conduct complex cognitive activities. 
Working memory is also related to consciousness, because when we 
are actively processing or storing information in working memory, we 
are aware of such processes (Baddeley, 2007; Sweller, 2003). However, 
the cognitive processes conducted in working memory can be both 
controlled and automatic (Baars & Franklin, 2003). Processing the 
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meaning of new text, for an example, can be a controlled process because 
we may be searching for meaning and conscious of doing this, whereas 
while reading the actual words in the text, it will be more automatic 
because we are familiar with the actual words.

Working memory: limited capacity. Like sensory memory, 
working memory has a limited capacity. Under most circumstance, 
working memory is only able to hold about five to nine chunks (seven 
plus or minus two) of information simultaneously (Miller, 1956). 
Miller's findings were revisited more recently by Cowan (2000), who 
revealed that working memory can only hold less than four chunks of 
information simultaneously during more complex cognitive activities, 
such as evaluating, contrasting, or combining new and old knowledge. 
Ericsson and Kintsch (1995) asserted that these limitations apply for 
novel material only. When working memory deals with well-learned 
material stored in long-term memory, its limitation reduces. Other 
researchers, such as Oberauer and Hein (2012), have argued that 
learners can only pay attention to a single chunk of information at a 
given time; meanwhile, Sweller et al. (2011) have suggested that the 
relative capacity of working memory depends entirely on the complexity 
of the cognitive process performed. Learning new skills or solving 
high complexity problems in novel situations considerably reduces the 
capacity of working memory to deal with the amount of information 
presented.

Working memory: limited processing duration. Not only is 
working memory limited in capacity, but it is also limited in duration. 
Peterson and Peterson (1959) found that information stored in working 
memory starts to disappear within a few seconds and is completely 
lost after 20 seconds because of interference, decay and replacement 
by subsequent information. Rehearsal can maintain the information 
in working memory and overcome its loss. But if information is not 
rehearsed, it will be quickly forgotten (Waugh & Norman, 1965).
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Baddeley and Hitch’s working memory model. In contrast to the 
unitary system of working memory proposed by Atkinson and Shiffrin, 
Baddeley and Hitch (1974) developed a more precise model of working 
memory. This model sought to explain how received visual or auditory 
information was processed. As can be seen in Figure 4, the model 
consisted of three components (Baddeley, 1992).

Visuospatial  
sketch pad

Central executive Phonological  
loop

 

Figure 4. The simplified model of working memory 
system, adapted from Baddeley (1992, p.557)

There is a central executive, which is assumed to be the central 
controller that guides how stimuli entering working memory are 
processed, as well as organising the other two components: the 
visuospatial sketch pad and the phonological loop (Baddeley, 1992, 1996; 
Baddeley & Hitch, 1974). These two components are also known as the 
slave systems of the central executive.

The two subsidiary (slave) components are distinguishable by the 
different types of information they store and process (Baddeley & 
Hitch, 1974, Baddeley, 2000). The visuospatial sketch pad stores and 
maintains visual imageries, such as shapes and colours. It is also able to 
perform spatial comparisons or movements of visual representations and 
mentally rotate images. The phonological loop is the verbal analog to 
the visuospatial sketch pad. Its function is to retain verbal and acoustic 
information. It is assumed to have a temporal phonological store that is 
able to hold the information, which will decay after few seconds unless 
the information is refreshed through articulatory rehearsal. Baddeley 
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(1996, 2007) asserted that the phonological loop has evolved during 
language comprehension through the process of rehearsal and response 
production.

Building on his initial model, Baddeley (2000) later revised the 
model by adding an episodic buffer (see Figure 5).

 

Central  
Executive

Visuospatial  
sketch pad

Phonological  
loop

Episodic 
Buffer

Visual 
Semantics

Episodic 
LTM

Language

Fluid 
Systems

Crystallized 
Systems

 

Figure 5. The revised model of the working memory 
system proposed by Baddeley (2000, p. 421).

The unshaded areas represent fluid systems that have the capacity 
for attention and temporary storage and are unchanged by learning. The 
shaded areas represent ‘crystallized’ cognitive systems that are capable 
of holding information or knowledge.

The episodic buffer is assumed to have a limited capacity when 
accumulating information from the slave systems. Specifically, the 
episodic buffer was proposed as a subsystem that integrates information 
from both slave systems into unified chunks forming coherent episodes. 
Baddeley further explained that the integrating process involves an 
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interface between episodic long-term memory and the stimuli stored in 
the slave systems (Baddeley, 2000, 2001). Episodic knowledge (i.e., the 
recollection of individual events) in long term memory is retrieved by 
the central executive into the episodic buffer to assist the integration of 
information in order to represent the information in terms of space and 
time (Baddeley, 2001).

Moreover, Baddeley (1996) contended that the central executive 
plays the major role in working memory because it has a function 
equivalent to a supervisory attention system that plays an important role 
in managing attention resources for the subsidiary systems. Specifically, 
the central executive has control over the episodic buffer enabling it 
to integrate new knowledge from the visuaospatial sketchpad and 
the phonological loop, with information stored in long term memory 
(Baddeley, 2000, 2001).

It has been highlighted that sensory memory and working memory 
are restricted in capacity. In contrast, long-term memory has an extremely 
large capacity, and exerts considerable influence over working memory. 
In the following section long-term memory and how knowledge is 
organised are discussed.

Long term memory
Long term memory is considered to be a permanent store of 

information accumulated and transformed over human lives (R. C. 
Atkinson & Shiffrin, 1968; Sweller et al., 2011). It provides a permanent 
storage repository in our cognitive architecture and has a virtually 
unlimited capacity. It is argued that long-term memory is central 
to human cognition, since the purpose of learning is to change the 
knowledge structures contained within long-term memory (see Sweller 
et al., 2011).

Initial evidence that long term memory has an unlimited storage 
capacity came from De Groot (1978) in his classic study on chess. 
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The study was completed between 1938 and 1943, and was originally 
designed to analyse how chess players think when making their moves. 
The participants consisted of well-known chess grandmasters, masters, 
champions and less-skilled players, who were asked to think aloud when 
deciding what moves to make. De Groot predicted that grandmasters 
would use sophisticated strategies and tactics, but found little difference 
between the methods employed by chess players with different levels of 
expertise.

De Groot also asked participants to look at specific chess 
configurations on a board for a short time interval (10 to 15 seconds), and 
then asked them to reconstruct the configurations, after the board was 
withdrawn from sight. De Groot found that grandmasters were able to 
efficiently grasp the configuration in less time (about five seconds), more 
accurately reconstruct it, and could then indicate the best associated 
next move, compared to the less-skilled players. He further found 
that grandmasters could visualise chess configurations as meaningful 
structures, which enabled them to understand the underlying concepts 
involved. They possessed a large knowledge base of chess positions 
and appropriate moves that gave them a distinct advantage over less 
experienced chess players. De Groot suggested that the vast amount 
of chess structures remembered by grandmasters were a result of many 
years of experience. De Groot’s study greatly influenced the study of 
human cognition because it illustrated, for the first time, that expertise 
in chess was a result of knowledge stored in long-term memory, rather 
than superior on-the-spot problem solving and planning.

Chase and Simon (1973) replicated de Groot’s finding that master 
chess players were superior to novel players when asked to memorise 
real chess configurations. However, when shown chessboards where 
the pieces were randomly placed, experts had no better recall than 
novices. This last result demonstrated that chess experts do not have a 
greater working memory capacity than novices as such. When trying 
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to remember random configurations, all players were constrained by 
Miller’s restricted capacity findings. It was only when the chess pieces 
created a meaningful pattern that experts had better recall as a result of 
a superior long-term memory.

Further research by Simon and Gilmartin (1973) using a computer 
program to simulate the chess position reconstruction process, 
suggested that master players have acquired hundreds of thousands of 
chess configurations in their long term memory which enables them to 
create meaningful chunks for chess positions. These chunks not only 
allow superior short-term recall of chess games, but also enable them 
to recognise a game situation, and the best way to proceed in the game.

Following research into chess, studies in other domains, such as 
in electronics (Egan & Schwartz, 1979), physics (Chi, Feltovich, & 
Glaser, 1981; Chi, Glaser, & Rees, 1982), and mathematics (Sweller 
& Cooper, 1985), have provided more understanding on how expert 
learners have acquired unlimited amounts of knowledge. Consistently 
it has been shown that knowledge stored in long term memory is the 
major difference between experts and novices in any given domain (see 
Ericsson, Charness, Feltovich, & Hoffman, 2006). Not only do experts 
have more knowledge than novices, but also they possess knowledge 
that is more connected and sophisticated (see Section 1.3 for more 
detail). The following section discusses schema theory, which provides 
a well-researched explanation of how knowledge is constructed and 
structured in long term memory, and how it becomes automated.

Schema Theory

Schema theory is used to explain how knowledge is stored in long 
term memory (Sweller et al., 1998). A schema is an internal mental 
representation in human cognition, and its definition emerged from 
Bartlett’s study of thinking processes as well as Piaget’s theory of 
cognitive development (Mayer, 1977).
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Schema construction
Bartlett’s study. Bartlett (1932) introduced the term schema as 

“an active organised setting” (p. 209) based on the accumulation of 
past experiences. In his groundbreaking study, Bartlett analysed the 
quality of information recall using several methods and materials, such 
as facial images, novel folk stories, picture writings, descriptive and 
argumentative prose passages.

Concerning the highly influential folk story, The war of the ghosts (p. 
65), he observed that subjects could not replicate the material literally 
(as it is). He found that there were tendencies to transform the material 
into a general nature, or the rationalisation of unfamiliar characters by 
changing them into more familiar characters. The British students in 
the study were unable to make sense of some aspects of the culturally 
different North-American folk story and therefore interpreted it in 
terms of their own culture. Hence it was concluded that human memory 
attempts to make meaning of perceived information by connecting it 
to something that has been acquired previously. Bartlett named this 
knowledge structure as a schema. The British students re-constructed 
the story in terms of their own culture-specific knowledge. Having 
perceived the information in a certain fashion, schematic knowledge 
highly influenced their responses.

Piaget’s theory. While Bartlett’s study shows that prior-schemas 
influence the construction of new knowledge, Piaget theorised how 
schemas (schemata) are constructed and re-constructed. According to 
Wadsworth (1978), Piaget defined a schema as a structure of knowledge 
that acts as an active internal reorganisation of information. Piaget 
asserted that schemas must be constructed purposefully by linking actions 
on objects with one’s own experiences of similar things, and therefore 
schema construction is an individual unique action (Wadsworth, 1978).
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Piaget’s original studies investigated children’s cognitive development 
using a clinical observation method (Mayer, 1977). Although the use 
of this method was criticised, Mayer argued that Piaget’s theory has 
been very influential in the area of human cognition. A key aspect of 
the theory assumes that schemas evolve because humans have always 
learned from the environment in order to survive (Mayer, 1977).

The construction of new schemas occurs in two ways: assimilation 
and accommodation (Mayer, 1977; Wadsworth, 1978). Assimilation 
occurs when new information, which is similar but not identical to 
the existing schematic knowledge, is integrated or incorporated into an 
existing schema. To illustrate this, students learn the concepts of square 
and rhombus by associating them with a known schema for a rectangle, 
which is a plane shape with two sets of parallel sides.

 

Old schema ------------------- new schemata as a result of assimilation
Figure 6. Assimilation of new schemata

Accommodation occurs when changes in the existing schema are 
made in order to fit the new information. When a student is learning 
about the new concept of a square by looking at its similarities and 
differences with the existing concept of a rectangle, the central concept 
associated with a rectangle has to be restructured to accommodate a 
quadrilateral with the same length of sides.
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Old schemata as a result of  
assimilation 

new schemata as a result of 
accommodation

------------------

Figure 7. Accommodation of schemata

However, under most circumstances, assimilating new information 
and accommodating an old schema to fit a new schema causes cognitive 
disequilibrium. Cognitive disequilibrium leads to a search process of 
balancing cognitive structures which is called equilibration. An active 
equilibration process allows learners to continuously assimilate new 
information and accommodate old schemas until a better sense of 
understanding is obtained. Equilibration maintains the integration of 
new schemas and also the alteration of the older schema into a more 
organised representation (Mayer, 1977; Wadsworth, 1978).

A key function of schemas is that they organise information stored 
in long- term memory (Sweller et al., 2011; Sweller et al., 1998). A 
number of elements of information can be incorporated into a single 
schema. For example, four elements, floor, wall, roof and space, can be 
incorporated into a schema based on the concept of room. The schema 
has a meaningful interrelated structure linking the properties of the 
four elements and how they fit together and interact. Furthermore, the 
element floor can consist of sub-elements such as foundation, base, 
flat, tile, carpet, rectangular shape, ground, and so forth. This example 
illustrates how schemas consist of connected information, using various 
levels of information. Schemas can be grouped together to form broader 
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categories. For example, room can be considered a sub- category of a 
house schema.

Central to cognitive load theory is the use of schemas to help 
reducing working memory load (Sweller et al., 2011; Sweller et al., 1998). 
Because schemas  consist of connected elements, information can be 
retrieved from long term memory as chunked information. For example, 
consider the English alphabet. When very familiar with it, students 
can use the alphabet as a single piece of information, rather than 26 
individual elements. Consequently, if asked to remember the alphabet 
and complete other tasks it may be easy to complete these tasks, as only 
one other piece of information has to be remembered simultaneously, 
in addition to completing the tasks. The same argument applies when 
constructing new schemas; if relevant chunked information in the form 
of schemas can be accessed from long term memory, more available 
resources are available in working memory to process the information 
required to acquire new knowledge.

Schema automation
Schematic knowledge can help overcome the limitations of a very 

limited human working memory as described above. Another advantage 
occurs when schematic knowledge is automated. Schema automation 
occurs when a schema can be activated effortlessly (Schneider & 
Shiffrin, 1977; Shiffrin & Schneider, 1977).

Being able to access schematic knowledge with little effort again 
has little impact on working memory load, and therefore allows more 
cognitive resources to be used for schema construction (Sweller et al., 
2011; Sweller et al., 1998). It is found that schema automation occurs 
gradually and only with extensive use of the schema (Cooper & Sweller, 
1987; Ericsson, Krampe, & Tesch-Romer, 1993).
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The following example illustrates this point. The first time we learn 
handwriting, we have to consciously pay attention to how to hold a 
pencil when writing basic text like the alphabet. Focusing on the actual 
writing can interfere with learning the alphabet. However, after a period 
of practice, we are able to write more complicated passages without 
paying much attention to how we hold the pencil, because handwriting 
skills have become automated. Similarly, when we learn to read, we need 
to consciously recognise letters and pronounce every syllable. However 
after many years of reading, we can read familiar text without effort 
as reading has become automated. Hence working memory resources 
can be directed to understanding more complex text. In mathematics, 
the first time we learn simple addition, we have to consciously pay 
attention on numbers or maybe their representations. However, after 
some times of practice, we are able to do mental addition and hence we 
can do multiplication without paying too much attention on the simple 
addition anymore.

Highly automated schemas are very desirable, but research has 
shown that extensive practice is required for knowledge and skills to 
become automated (see Ericsson et al., 2006). Recall, de Groot (1968) 
found that grandmasters spent many years of playing chess before they 
were able to efficiently recall chess configurations given a short exposure. 
Similarly, experts in physics had spent years building knowledge in their 
domain, enabling them to excel in physics problem solving (Chi et al., 
1981; Chi et al., 1982).

Summary

Early attempts to model our cognitive structures were based 
on the modal model (R. C. Atkinson & Shiffrin, 1968; Waugh & 
Norman, 1965). This model included three distinct memory systems: 
sensory memory, working memory and long term memory. Sensory 
memory is the bridge between our virtual system and the environment. 
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Working memory is where conscious thought processes the meaning 
of information perceived and transferred by sensory memory. The 
Baddeley working memory model (Baddeley, 1992, 2000; Baddeley 
& Hitch, 1974), expanded upon the early models by arguing that 
working memory itself consists of a central executive and subsidiary 
components: the visuospatial sketch pad, the episodic buffer and the 
phonological loop. Each sub-system has its own function controlled by 
the central executive. Both sensory and working memory have severe 
limitations in capacity and duration, while long term memory can store 
unlimited amounts of knowledge. To explain how long term memory 
stores and uses knowledge, schema theory (Bartlett, 1932; De Groot, 
1978) has been highly influential. A schema is a knowledge structure 
that combines elements of information into the category in which it 
will be used (Sweller et al., 1998).

Schemas, stored in long term memory, are retrieved into working 
memory, and used to process new information and subsequently help 
develop new schematic knowledge. Schema construction is managed 
by working memory, and because of its limited capacity, automated 
schemas are very helpful and necessary (Sweller et al., 1998). Schema 
automation allows cognitive processes to occur effortlessly in working 
memory with little demands on cognitive load, thus making more 
cognitive resources available for more complex cognitive tasks, such as 
problem solving.
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Chapter III

Experts and Novices’ Cognition

The previous chapter covered human cognition and specifically 
highlighted how the modal model can describe how knowledge is 
acquired, how schema theory can explain the way knowledge is stored 
and organised in long term memory, as well as how schema automation 
can reduce cognitive load in working memory. It has been pointed out 
that the study of human cognition was a major impetus in the study of 
expert cognition (Feltovich, Pritetula, & Ericsson, 2006).

Much research in the field of expertise has been conducted by two 
general approaches (Chi, 2006): (1) studying how a highly distinctive 
expert performs in their domain of expertise, or (2) comparing experts to 
novices. Chi concluded that studies on expertise have not only identified 
ways in which experts excel, but also ways in which they do not. Building 
on empirical evidence, generalisable characteristics of experts have been 
developed (Feltovich et al., 2006; Glaser & Chi, 1988), and these are 
discussed in the following section. In recent developments, the study 
of expert cognition and characteristics of expertise have influenced 
educational goals, particularly in instructional designs. It is argued that 
the aim of classroom instruction has shifted from a focus on behavioural 
changes to the development of expertise (Amirault & Branson, 2006; 
Feltovich et al., 2006).
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Generalisable characteristics of expertise

Feltovich et al. (2006) pointed out that the study of expertise has 
progressed since the early work of Chi and colleagues on expertise 
characteristics (Glaser & Chi, 1988), covering much wider contexts, 
many of which are reported in the handbook entitled Expertise and 
Expert Performance edited by Ericsson et al. (2006). Feltovich et al. 
(2006, pp. 47-60) identified nine characteristics of expertise, which are 
briefly summarised below.

1.	 Expertise is limited in its scope and elite performance does not 
transfer. Feltovich et al. found that there was strong evidence in 
support of the finding that experts excel in their own domain. In 
addition when experts have reached an elite level, it is rare for an 
individual to have a second domain area of expertise. High levels 
of proficiency in one domain do not transfer to high levels of 
proficiency in a second domain, even when there may be similarities 
between domains.

2.	 Knowledge and content matter are important to expertise. This 
characteristic elaborates the first characteristic above. Feltovich et 
al. found that experts rely heavily on their domain specific skills 
and knowledge to produce a superior performance in various 
tasks in their domain of expertise. It was found that their specific 
expertise influenced basic cognitive abilities, such as reasoning and 
encoding. Experts also acquire rich knowledge in a specific domain 
and continuously develop their level of expertise. As a consequence, 
their increasing level of expertise gradually turns them into unique 
individuals.

3.	 Expertise involves larger and more integrated cognitive units. 
Feltovich et al. also asserted that there was strong evidence 
in support of the notion that experts are able to perceive larger 
amounts of information in working memory because they have 
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acquired superiority in chunking large amounts of information 
with their increased experience. They become experts because they 
have superior encoding and storage skills that allow them to build 
well organised knowledge in long term memory. This superiority is 
acquired through extensive practice.

4.	 Expertise involves functional and abstracted representations of 
presented information. This means that experts are able to see and 
represent information at a deeper level using specific principles 
or rules associated with the problem. Feltovich et al. added that 
experts can develop more complex (functional and abstracted) 
representations of information by immediate and integrated access 
to knowledge relevant to task demands because they have acquired 
more organised retrieval skills.

5.	 Expertise involves automated basic strokes. In addition to their 
effective encoding, storage and retrieval skills, experts have highly 
automated skills. Feltovich et al. pointed out that this automation 
results from consistent practice on tasks specified in the domain of 
expertise over a very long period. It was also found that automation 
plays a great role not only in accomplishing more complex skills but 
also in controlling the usability of available knowledge.

6.	 Expertise involves selective access of relevant information. 
Feltovich et al. found that experts are better able to pay attention to 
relevant information by using discriminating cues. They are able to 
utilise functional and abstracted models to categorise information 
and transfer their knowledge of past events to new ones. Moreover, 
they are able to recognise the particular information in a task and 
adequately use their knowledge to perform that task.

7.	 Expertise involves reflection. Experts have a good understanding 
of their own cognitive processes, indicating metacognitive skills. 
Feltovich et al. noted that research consistently showed that they 
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not only have the capability of planning a solution process, but are 
able to modify and adjust their plans during the problem solving 
process. Expert monitoring behaviour has three functions. Firstly, it 
provides efficient and rapid reactions to situation changes. Experts 
are able to back-track or start again when their reasoning needs 
to be modified. Secondly, experts can simultaneously improve and 
refine their skills. Thirdly, experts can adjust their planning to meet 
the demands of novel situations. When experts fail they can explain 
why such procedures were inapplicable, whereas novices cannot.

8.	 Expertise is an adaptation. Experts have the ability to adapt to 
cognitive restrictions, such as limitations posed by attention 
resources and working memory when novel or simultaneous 
information is present, and an impaired access to long term memory 
(e.g., forgetting an important aspect). This adaptation consequently 
encourages them to generate effective applications to task demands.

9.	 Simple experience is not sufficient for the development of 
expertise. Supported by the study of deliberate practice by Ericsson 
and colleagues (e.g., Ericsson et al., 1993), Feltovich et al. concluded 
that to acquire the above characteristics of expertise, a learner needs 
to practice consciously in a working environment that is designed 
to achieve performance superiority, and perform that practice over 
a substantial period of time. As Ericsson (e.g., Ericsson et al., 1993), 
has observed, in most domains it takes 10 years of deliberate practice 
to achieve expert status.

Difference in problem solving strategies between experts 
and novices

As described above, much is known about the characteristics of 
experts. Of particular importance to this book, and cognitive load theory 
in general, is the difference between experts and novices when solving 
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problems. This section discusses problem solving and the strategies used 
by experts and novices.

Problem solving.
Problem solving is an activity to find a solution to a given problem 

that cannot be solved immediately (Kantowski, 1977). In other words, 
no automatic solution is available to the problem solver. Sweller (1999, 
p. 3) gives the following example: “Suppose five days after the day before 
yesterday is Friday. What day of the week is tomorrow?” This specific 
problem seems to be familiar to us, yet the solution may not be available 
immediately. According to the prior-knowledge of the problem solver, 
solutions may vary from algebraic equations to trial-and-error.

According to Kantowski (1977) problem solving consists of a set of 
activities (the process) and actual solutions (the product). Specifically, 
Anderson (1993) summarised that problem solving creates a problem 
space consisting of a number of states dependent upon the rules of 
the problem. Problem solving attempts are made to find connections 
between the facts or rules within the problem space as well as to create 
a path between the given state and the goal state.

Problem solving is common in our everyday life, and so it is essential 
to be able to solve problems. As argued by Schmidt, Loyens, Van Gog, 
and Paas (2007) problem solving is an important process in learning 
since it facilitates reasoning and the ability to explain observable facts 
and occurrences. However, to solve problems effectively depends on the 
level of expertise of the problem solver, since relevant schemas in the 
domain are essential to recognise and solve problems. As was discussed 
above, experts possess well-developed automated schemas, which enable 
them to categorise a problem based on its deep structure and solve it 
effectively (Chi et al., 1982, Feltovich et al., 2006). In contrast, novices or 
less-knowledgeable learners in a domain do not have sufficient schemas 
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and categorise problems according to a more superficial structure, 
resulting in inefficient solutions or no solution at all.

Problem solving skills
Kantowski (1977) stated that problem solving has two aspects: (1) 

the process: a set of activities, and (2) the product: the actual solution. 
It is noted that an ill-defined problem has multiple acceptable products 
and many possible ways for reaching them, while a well-defined problem 
has only one possible product and one agreed process for reaching it 
(Brunning et al., 2004).

Brunning et al. (2004) assumed that successful problem solvers 
engage five component skills: (1) identifying the problem, (2) representing 
the problem, (3) selecting an appropriate strategy, (4) implementing 
the strategy, and (5) evaluating solutions. These skills are heavily 
constrained by domain specific knowledge (secondary knowledge) and 
general problem solving strategies (biologically primary knowledge). 
Identifying the problem can be the first challenging part in solving a 
problem, since it requires creativity, persistence and willingness to think 
carefully about the problem over sufficient time. The degree to which the 
problem solver acquires domain specific prior knowledge can determine 
successful problem finding since prior knowledge facilitates perception 
and elaboration of new information. For instance, mathematical 
experts may be less able to identify a medical problem because they 
may not have sufficient prior knowledge that allows them to identify 
medical problems, and on the other hand, a doctor can identify medical 
problems but may not be able to solve some mathematical problems as 
mathematicians do.

After problem finding, problem solvers may need to represent the 
problem externally as the amount of information needed to deal with 
complex problems is constrained by working memory load and so too 
difficult to solve mentally. In order to find a strategy path, problem solvers 
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should represent the more important components of the problem space: 
goal state (what we want to accomplish), initial state (what is the given 
information), operators (objects or concepts that can be used to reach 
the goal) and constraints on operators (rules or procedures to be used 
by the operator). It has been argued that the size of a problem space 
depends on the way the problem is understood or the level of expertise 
(Bransford, Brown, & Cocking, 2005). More knowledgeable problem 
solvers tend to categorise the problem space based on principles or 
solution strategies that are relevant to solve the problem, because they 
have sufficient knowledge and experience of it. 

However, less knowledgeable problem solvers rely on the surface 
structure such as the objects that appear in the problem. Evidence 
for this hypothesis was shown in the first experiment of Sweller and 
Cooper (1985) that investigated the algebraic problem representation 
skills of three different age levels using Einstellung and memory tests. 
Einstellung is described as an occurrence of inappropriate use of a 
previously acquired schema because a problem is incorrectly perceived 
as belonging to a familiar category that requires the use of that particular 
schema (Sweller & Cooper, 1985). The results suggested that the more 
experienced students had the better cognitive representation, indicated 
by a superior memory of actual algebraic equations and an increased 
resistance to Einstellung effects in operating on equations, than the less 
experienced students. As a consequence, providing more practice on a 
particular problem type as well as on analysing different problems by less 
experienced problem solvers can improve their ability in categorising 
the problem space.

Thirdly, problem solving requires selecting an appropriate strategy: 
that can be a highly structured strategy, namely, an algorithm, or a general 
problem solving strategy (Geary, 2007), which is broad knowledge 
that is not connected to a specific domain but generally needed for 
completing problem solving tasks, for example vocabulary to express 



Psychology of Mathematics Learning:  
Constructing Knowledge30

ideas, general search information skills or metacognitive knowledge to 
carry out problem solving activities (Brunning et al, 2004). The problem 
of finding the volume of a geometrical shape which can be solved using 
the volume formula is an example of the use of an algorithm based 
strategy. Expert problem solvers in the domain, not surprisingly, are 
able to retrieve or to select the appropriate algorithm because of their 
proficient schematic knowledge or their large experience of planning 
strategies. However, using an algorithm based strategy is impossible for 
novice problem solvers because either the algorithm does not exist in 
their long term memory or they lack expertise in using it. Subsequently, 
novice problem solvers will use a general problem solving strategy that 
is traditionally called a heuristic or “rule of thumb”, trial and error, or 
means ends analysis. Brunning et al (2004) indicated that people who 
deal with a very unfamiliar problem may not have sufficient information 
or experience to derive a strategic solution plan. They might use trial and 
error at the start and then, after reaching some preliminary conclusion 
to the problem, turn to a more efficient strategy. This strategy may 
work to obtain a solution but such a strategy is considered the least 
efficient method of problem solving because it does not direct the 
problem solvers' attention to acquire practical schemas in their long 
term memory (Sweller, 1999).

Schoenfeld (1980) defined a heuristic strategy as: “a general 
suggestion or technique which helps problem-solvers to understand or 
to solve a problem” (p. 795). Heuristic strategies include strategies used 
by expert problem solvers that are stated as short explanations or clues. 
Heuristic strategies use working backwards, or a looking back strategy 
to search for a solution (Kantowski, 1977). Schoenfeld (1980) provided 
an example of the use of a heuristic strategy in mathematics as follows.

“To solve a complicated problem, it often helps to examine and solve 
a simpler analogous problem. Then exploit your solution.”

Problem 5: Let a, b, and c be positive real numbers. Show that not 
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all three of the terms a(1 – b), b(1 – c), and c(1 – a) can exceed ¼.

(Schoenfeld, 1980, p. 795)

A heuristic method applied to the above examples shows that the 
problems can be solved by examining and applying a simpler analogous 
problem to the given problem. Arguably, the heuristic method may 
be a source of extraneous cognitive load. In problem 5, an analogous 
two-variable formation may be used and then expanded to three 
variables to exploit the answer. This problem seems difficult to solve, 
indeed, the author stated that an easier way to solve this problem 
type using analogous problems had not been found. Nonetheless, the 
author argued strongly that using a heuristic strategy with an example 
of how that strategy works and training to work with it will facilitate 
problem solvers, without explicitly explaining how detailed the heuristic 
strategy is.

The heuristic method imposes a heavy working memory load because, 
rather than facilitating schema acquisition and automation, a heuristic 
strategy suggests learners create sub goals or analogous problems that 
will result in slower learning and the hazard of misconception.

It has been indicated that a heuristic strategy can be applied 
differently to different problems and to do so, one needs to retrieve other 
schemas in order to find an analogous problem and then apply means 
ends analysis or a trial and error approach. Prior knowledge possessed 
by problem solvers is the reason for this. In addition, it can also be 
argued that a heuristic method does not always guarantee a solution 
and even makes problem solving more difficult. Notwithstanding the 
fact that a heuristic method may provide a stepping stone, it is obvious 
that a heuristic strategy is inefficient for learning novel problem solving 
because it imposes a high cognitive load.

The fourth problem solving skill, implementing the strategy, largely 
depends on the result of identifying and representing the problem, and 
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selecting the appropriate solution strategy. Notably, expert and novice 
problem solvers have a clear difference in their implementing a solution 
strategy since they have a contrasting schema structure. The schematic 
structure of this knowledge in long term memory largely determines 
how expert problem solvers derive and implement a solution strategy 
(Sweller, 1999; Sweller et al., 1998). Expert problem solvers posses a 
well developed declarative knowledge base about how a problem is 
structured, procedural knowledge about how to perform a problem 
solution and conditional knowledge about when and why to use 
declarative and procedural knowledge. This knowledge is developed by 
deliberate practice (Erricson, 2003) and so the more experience gained, 
the better the problem solving strategy. In contrast, novice problem 
solvers posses either less prior knowledge required to identify and 
represent the problem or less experience in selecting a strategy to solve 
domain specific problems. Furthermore, Sweller (1999) and Sweller, 
et al. (1998) pointed out that less knowledgeable problem solvers 
coordinate the problem solution phase poorly, consider single solutions 
based on a noticeable problem space and reach conclusions that may be 
less transferable to another problems.

The fifth problem solving skill is evaluating the solution both in 
terms of the process and the product of problem solving (Brunning et 
al, 2004). Evaluation of the solution allows us to reflect more deeply 
on the process of problem solving and so understand the application of 
a specific strategy. Expert problem solvers are more likely to consider 
more solutions and carefully evaluate solutions before discarding 
them, unlike novice problem solvers (Brunning et al, 2004). Pawley, 
Ayres, Cooper & Sweller (2005) investigated the effect of checking 
instructions in translating a word problem into algebraic equations. In 
the experiment, Pawley, et al. explicitly instructed students to check 
whether the equation formed has the same meaning as the given word 
problem. The results suggested that checking instructions was beneficial 
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for lower knowledge students but not for higher knowledge students. It 
was found that higher knowledge students were capable of completing 
the problem better without explicitly instructed to check. Similar 
to Brunning et al. (2004), Pawley et al. (2005) argued that checking 
instructions may be a redundant activity for more knowledgeable 
students because they already posses evaluation skills as part of their 
problem solving approach.

The problem solving strategies of experts and novices.
Experts are able to understand and categorise problems efficiently 

and use a forward moving strategy to solve them (Ayres & Sweller, 1990). 
For example, an expert mathematician can solve an arithmetic word 
problem by creating equations to represent the problem mathematically, 
and then generate the appropriate equations to solve the unknown 
variables required. They have acquired sufficient schemas permitting 
them to effectively select the associated steps to move forward from the 
problem statement towards the problem goal.

Novices or less-knowledgeable learners without schematic 
knowledge will more likely use a general problem solving strategy, 
such as means-ends analysis (Ayres & Sweller, 1990; Sweller, 1988). 
Using means ends analysis, problem solvers try to reduce the distance 
between the given information and the problem goal by creating sub-
sub goals and then examining them individually to find the solution. 
The inefficiency of means ends analysis has been confirmed by several 
studies (Ayres & Sweller, 1990; Sweller, 1999; Sweller & Cooper, 1985).

Ayres and Sweller (1990) investigated the effect of using means 
ends analysis during geometry problem solving. It was found that most 
errors occurred during the calculation of the sub-goal preceding the 
goal in either two or three step geometry problems. The authors stated 
that means ends analysis is often used not only when calculating the 
goal of the problem, but also in the sub goal prior to the goal. The use of 
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means ends analysis might be beneficial for some problem learners when 
dealing with unfamiliar problems, because it can increase the chance of 
completing the goal of the problem, however, it does not necessarily 
facilitate learning. In addition, the difficulty level of the problem (or 
the intrinsic cognitive load) many contribute to the use of means ends 
analysis. Ayres and Sweller, in their experiment, confirmed this fact and 
demonstrated that after the unfamiliar problems were altered to reduce 
the use of means ends analysis by constructing configurations that had a 
clear solution path thus encouraging a forward strategy, the calculation 
error location is random. This means that the use of means ends analysis 
can be minimised by tailoring the configuration of the problems. The 
authors concluded that the use of means ends analysis imposes a heavy 
cognitive load and can be minimised.

The means ends analysis strategy creates sub-goals or analogous 
problems by breaking down a problem into smaller sub problems, and 
testing the effectiveness of each step (Ayres & Sweller, 1990). In other 
words, to search for a solution, problem solvers move backwards from 
the goal to the problem state, creating sub-goals to be found in the 
process. This strategy may result in a problem solution, but can create 
heavy demands on working memory and direct cognitive resources 
away from schema construction (Ayres & Sweller, 1990; Sweller et al., 
2011; Sweller et al., 1998).

Steps of Means Ends Analysis

1.   Looking at the initial problem state
2.   Looking at the current problem state
3.   Looking at the goal state
4.   Defining differences between these states
5.   Finding moves to reduce those differences
6.   Considering sub-goals that may lead to a solution

Figure 8. Steps of Means Ends Analysis
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The following example of problem solution illustrates the use 
of means ends analysis strategy using a geometry problem: Finding 
a measure of an angle, which consists of eight steps of means ends 
analysis. It should be noted that this strategy is not effective and should 
only require two steps only to solve by applying satisfying knowledge if 
possessed by the problem solver.

Step 1. Identify the goal : angle X°

Step 2. Found that X° = Y°
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Step 3. Creating a sub-goal Y°

Step 4. Found that Y° + Z° + 47° = 180°
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Step 5. Create sub-goal Z°

Step 6. Calculating angle Z°
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Step 7. Back to angle Y°

Step 8. Back to angle X°

Figure 9. Eight steps of means-ends analysis for solving a geometry problem
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Summary

One of the aims of learning mathematics is to master problem 
solving strategy; therefore it is crucial to understand the strategy of an 
expert problem solver in a specific domain of mathematics. Cognitive 
psychologists have attempted to study how learners can be an expert 
problem solver. Experts and novices in a specific domain are distinguished 
by differences in their schematic knowledge. Experts can categorise and 
formulate a solution to a problem based on its deep structure, and solve 
problems in a forward-working strategy. In contrast, novices can only 
categorise a problem based on its surface structure and most likely try to 
solve the problem in a backwards-working strategy using means-ends 
analysis. As a consequence, if a learner aims to construct knowledge of 
how to solve problems like expert mathematicians, they should apply 
the strategies of problem solving used by the mathematics experts. In 
order to acquire strategies of problem solving used by the mathematics 
experts, the learner must possess schematic knowledge. The following 
chapters describe cognitive load theory and the generated effects which 
may explain how learners develop schematic knowledge effectively. 
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Chapter IV

Cognitive Load Theory

Human cognitive architecture, discussed in Chapter II, informs 
us of the central components of human cognition, their nature when 
processing information and how expertise in a specific domain can be 
built. It also explains how knowledge is acquired and how problem 
solving skills are developed. Cognitive load theory argues that an 
understanding of human cognition provides a useful framework for 
designing effective learning environments (Sweller et al., 2011).

Generally cognitive load theory is concerned with the limitations 
of working memory when learning novel information, and that the 
central role of learning is to facilitate the knowledge acquisition and 
automation of knowledge held in long term memory. Cognitive load 
theory emphasises that learning is reduced when the presentation of 
the to-be-learned material causes a cognitive overload.

In more recent developments, Sweller has compared cognitive 
architecture to the theory of evolution by natural selection (Sweller, 
2003, 2004). He asserts that the information processing system is not 
unique to human cognitive architecture. Biological evolution provides 
an example of a natural information processing system that has an 
identical basic framework to the information processing system in 
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human cognitive architecture. Influential in this conceptualisation has 
been the work of Geary. 

Geary separates knowledge into two categories (Geary, 1995, 2002, 
2007, 2008). The first is biologically primary knowledge, which consists 
of skills that humans have specifically evolved to acquire, and the second 
is biologically secondary knowledge, which consists of specific cultural 
skills that humans need to acquire. This categorisation suggests that 
instructional procedures should also be constructed depending on 
which knowledge is to be acquired. According to these recent theoretical 
developments, Sweller (2003, 2004) reconceptualised cognitive load 
theory into five basic principles which reflect the core characteristics of 
both human cognition and biological evolution.

This chapter is divided into two sections. The first section discusses 
the framework of cognitive load theory from an evolutionary education 
perspective. It encompasses the distinction between biologically primary 
and secondary knowledge and Sweller's five principles of cognitive load 
theory. The second section examines the sources of cognitive load, and 
describes a number of strategies that reduce cognitive load.

Human Cognitive Architecture in Evolutionary Perspective

Biologically Primary and Secondary Knowledge
Geary argues that different cognitive processes occur when dealing 

with biologically primary knowledge and biologically secondary 
knowledge as a consequence of the evolution of human cognitive 
architecture (Geary, 1995, 2002, 2007, 2008). He assumes that cognition 
has evolved as a function of adaptation, reproduction and survival, and 
is influenced by biological and cultural demands.

Geary has proposed a detailed distinction between biologically 
primary knowledge and biologically secondary knowledge, which 
can be clearly contrasted by how they are differently acquired. It is 
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argued that the human brain evolved over many generations to acquire 
biologically primary knowledge; that is, information required to survive 
in life, such as finding a path from one place to another, speaking to 
others, understanding facial expression, negotiating, making decisions, 
and listening to voices. This knowledge has grown as a tool to survive in 
everyday life. However, human cognition has also evolved to assimilate 
novel knowledge considered to be biologically secondary knowledge. 
This knowledge is culturally built and consists of the information needed 
for success in modern society, such as driving a car, writing a book, 
speaking a second language, baking a cake, playing a game, or solving 
mathematical problems. This knowledge, which is very recent compared 
to primary knowledge, has only developed to fulfil the cultural needs 
formed by society.

Biologically primary knowledge may be considered general 
knowledge because it is applicable across domains. However, biologically 
secondary knowledge is domain specific. For example, the knowledge of 
basic algebraic equations has been acquired to solve various problems in 
the domain of algebra, but cannot be guaranteed to solve other problems 
in other domains. However, a heuristic problem solving strategy such 
as means-ends analysis (discussed briefly in Chapter III) is considered 
as biologically primary knowledge. It is a primary skill that can be 
commonly applied to many problem solving situations, regardless of the 
domain, when the required secondary skill is not available (see Youssef, 
Ayres, & Sweller, 2012), even though it may not successfully solve the 
problem.

In terms of cognitive effort, biologically primary knowledge is 
acquired easily, rapidly, automatically or unconsciously by immersion 
into a functioning society (e.g., family, community, social group). 
In contrast, biologically secondary knowledge requires conscious 
cognitive effort, and is usually acquired through formal educational and 
professional organisations.
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Learning to listen to and read our native language provides an 
example of primary and secondary skills respectively. Our skill to 
listening is most likely acquired unconsciously despite being comprised 
of various sound recognition skills. We may learn the sound of soft, 
charming, strong, intimidating or fearful voices through our daily life; 
and we have accumulated them rapidly, yet effortlessly, since we are able 
to hear. Interestingly, this skill grows without explicit instruction because 
we automatically learn to listen as our life is surrounded by sounds 
and voices. There are biological and cultural demands influencing our 
ability to understand voices. On the other hand, we need to deliberately 
acquire skills to read the alphabet simply because it is a fairly recent 
addition to society, although very important, as Geary (1995) notes. 
Without direct instruction for acquiring knowledge of reading, failure 
will most certainly occur. In addition, the learning process is conscious 
and demands cognitive effort.

Sweller et al. (2011) argue that both knowledge categories are 
learnable because human cognition evolves to construct knowledge. 
However, biologically primary knowledge cannot be explicitly taught 
because human cognition has evolved to acquire this knowledge 
automatically. On the contrary, biologically secondary knowledge is 
teachable, and should be taught using direct, explicit instruction because 
this knowledge is not acquired naturally (Geary, 1995). Lastly, it is 
important to note that biologically primary and secondary knowledge 
requires different contexts for their acquisition. Primary skills can be 
learned in the natural environment, but secondary skills need to be 
learned in well-organised environments, such as schools.

Because of the critical differences between primary and secondary 
knowledge, cognitive load theory is mostly concerned with instructional 
development for the acquisition of biologically secondary knowledge 
rather than biologically primary knowledge (Sweller et al., 2011).
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The following section discusses five principles linking human 
cognitive architecture and biological evolution. Using the analogy of 
human cognition as biological evolution has provided cognitive load 
theory a framework for analysing the efficiency of instructional designs 
as part of natural occurrence. (Sweller, 2003, 2004; Sweller et al., 2011; 
Sweller & Sweller, 2006). These five principles are: (1) the information 
store principle, (2) the borrowing and recognising principle, (3) the 
randomness as genesis principle, (4) the narrow limits of change 
principle, and (5) the environmental organising and linking principle.

Basic Principles of the Information Processing System
An information processing system requires at least four defining 

characteristics to be successful (Sweller et al., 2011). Firstly, it should 
be creative, in that it is able to generate novel information to overcome 
the complexity of information in the environment. Secondly, the 
effectiveness of created novel information needs to be tested and 
effective information retained and subsequently used. Thirdly, stored 
information can be used to direct the activity of the system. Lastly, 
effective information can be transferred across space and time.

Both human cognition and biological evolution are examples of 
sophisticated natural information processing systems and can be 
characterised as successful information processors (Sweller et al., 2011). 
Both consist of a set of natural entities that function to organise and 
process information. The following table (Table 1) describes aspects of 
human cognition that are comparable to aspects of biological evolution 
and their function.
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Table 1. Natural information processing system principles 
(Adapted from Sweller&Sweller, 2006, p. 436)

Principles Cognitive case Evolutionary 
case

Function

1 Information store 
principle

Long term 
memory

Genome Store 
information 
for indefinite 
periods

2 Borrowing and 
reorganizing 
principle

Transfer 
information to 
long term memory

Transfer 
information to 
a genome

Permit the rapid 
building of an 
information 
store

3 Randomness as 
genesis principle

Create novel ideas Create novel 
genetic codes

Create novel 
information

4 Narrow limit of 
change principle

Working memory Epigenetic 
system 
handling 
environmental 
information

Input 
environmental 
information to 
the information 
store

5 Environmental 
organizing and 
linking principle

Long term working 
memory

Epigenetic 
system 
handling 
genetic 
information

Use information 
stored in the 
information 
store

First principle: The information store principle
This principle states that all natural information processing systems 

must have a central store of information to accommodate the huge and 
complex variations of information available in the natural environment 
in which the system functions (Sweller & Sweller, 2006). Long term 
memory and the human genome provide an information store in human 
cognition and biological evolution systems respectively. Both have an 
unlimited capacity.
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In the biological system, Sweller and Sweller (2006) maintained 
that a genome stores a large amount of genetic-based information and 
governs biological activity. Additionally, the amount of information in 
a genome must be large in order to survive since it functions in an 
environment with a very wide range of information.

In human cognitive architecture, long term memory stores a 
huge amount of information and similar to a genome, the organised 
information in long term memory controls the activity of human 
cognition. As discussed in Chapter 2, the pioneering studies of de 
Groot (1978), and Chase and Simon (1973), demonstrated extremely 
the large capacity of long-term memory.

Second principle: The borrowing and reorganising principle
This principle affirms the manner in which information is obtained 

and amassed into an information store (Sweller & Sweller, 2006). 
According to Sweller, biological information is acquired by a genome via 
asexual or sexual reproduction. During asexual reproduction, information 
in a genome is copied and repeatedly passed to its offspring. During this 
reproduction, genetic information in the parent cell is exactly copied 
into the new cells. During sexual reproduction, an equal amount of 
genetic information is borrowed from two sexually different genomes, 
and then reorganised in such a way that results in a new unique genome.

Information acquisition in human cognition is considered identical 
to the reproduction mechanisms in the genome (Sweller & Sweller, 
2006). Similar to asexual reproduction, almost all of the secondary 
knowledge stored in long term memory is a result of borrowing the 
secondary knowledge from the long term memory of others. Repeatedly 
this acquired knowledge can be transmitted to others. Sweller argues 
that this mechanism is supported by primary knowledge, such as our 
skills of communicating with other people by listening to explanations, 
reading printed information or imitation.
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Moreover, Sweller suggests that human cognition rarely imitates 
others exactly, because the transmitted information will most likely 
be reconstructed to fit the information store. The schema theory, 
discussed in Chapter 2, provides evidence that borrowed information is 
reorganised by the Piagetian processes of assimilation, accommodation 
and equilibration in order to construct a better representation of 
knowledge in long term memory.

Third principle: The randomness as genesis principle
The borrowing and reorganising principle above demonstrates 

a method of acquiring and reconstructing information from others. 
The information is new to the borrower (learner) but old to the lender 
(teacher, peer and so forth), but does not explain how totally novel 
information is initially created and retained in the information store. 
The randomness as genesis principle describes how new information is 
initially created through a random generation and test of effectiveness 
procedure.

Sweller and Sweller (2006) point out that mutation is a mechanism 
used by natural systems to generate new variations of genetic material 
in genomes to increase their chance of survival. Further, Sweller et al. 
(2011) argue that although random mutation is the source of all variation 
and novelty in biology, without tests of effectiveness, mutations are 
worthless. Only those that are effective for survival and reproduction are 
retained in the genome. Drawing parallels with biological evolution, it 
can be proposed that human cognition initially creates new information 
using random generation and effectiveness test procedures (Sweller & 
Sweller, 2006).

Evidence for the random generation and test strategy is found in 
the use of general problem solving strategies. As indicated in Chapter 
2, when humans are presented novel tasks to solve, in the absence 
of relevant prior knowledge they rely on a general problem solving 
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strategy, such as means-ends analysis. New moves can be created using 
such strategies, although most cause dead-ends because they are applied 
without a sufficient knowledge base. However, if a successful move is 
acquired, often after many generations and testing cycles, it will be 
stored in long term memory as new knowledge, whereas failed moves 
are likely to be rejected and forgotten. Sweller et al. (2011) argue that 
the randomness as genesis principle underlies all human creativity.

Fourth principle: The narrow limits of change principle
In a novel environment, the randomness as genesis principle through 

a random generation and test procedure allows the information system 
to generate all possible combinations of information, and randomly 
and repeatedly, selects a combination to test its effectiveness until a 
successful new solution is found and new information acquired. The 
borrowing and reorganising principle also creates new information but 
as a result of the alteration of previously stored information (Sweller 
et al., 2011). Sweller and Sweller (2006) describe how the epigenetic 
system can facilitate or inhibit the occurrence of mutations in some 
parts of the genome determined by the condition of the environment. 
Consequently, large numbers of mutations do not occur simultaneously.

In human cognition, Sweller and Sweller (2006) argue that 
working memory can be considered analogous to the epigenetic 
system in biological evolution. As highlighted in Chapter 2, working 
memory's central function is to process information, but it has a 
severely limited capacity and duration for processing simultaneous 
information (Cowan, 2000; Miller, 1956). Due to the random 
generation and test procedure, potentially many combinations of 
information elements might need to be considered. To keep such 
combinations manageable, the natural information processing system 
relies on a limited capacity working memory. The narrow limits of 
change principle provides an explanation of why evolution has led 
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to a restricted working memory capacity. Without such limitations, 
it would be impossible to handle all the possible combinations 
generated by the randomness as genesis principle.

Fifth principle: �The environment organising and 
linking principle

According to Sweller et al. (2011) the previous four principles explain 
how a natural information processing system acquires information. 
The last principle explains how stored information is translated into 
activities and used in a specific environment.

In biological evolution, the epigenetic system transfers genetic 
material from the genome in order to respond to changes in environment, 
as well as to guide the functioning of the organism in response to 
environmental input (Sweller & Sweller, 2006).

Analogous to the epigenetic case, the environment organising 
and linking principle permits working memory to obtain unlimited 
amounts of organised information from long term memory. It can be 
recalled from Chapter 2 that experts have a superior cognitive system 
because of their ability to retrieve lots of information from long term 
memory. In contrast to the limited processing of novel information, due 
to the generation and test strategy, working memory can process vast 
quantities of information if the organised knowledge is stored in long-
term memory in the form of schemas. The demands of the environment 
provide the cue for the relevant information to be transferred to working 
memory. Prior to this activation, schematic knowledge lies dormant in 
long term memory.

It is this interaction between long term memory and working 
memory which underpins cognitive load theory. Working memory 
creates the vital link between the environment and long-term 
memory.
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Cognitive Load

It has been discussed that working memory can only manage a 
limited amount of novel information and as a consequence of this limit, 
knowledge acquisition is very much affected by the demands placed 
on working memory. Therefore, cognitive load theory is particularly 
focused on the level of cognitive load or mental activity imposed on 
working memory when dealing with novel information (Pass, Renkl, & 
Sweller, 2004; Sweller et al., 2011; Sweller et al., 1998).

Cognitive load can be defined as the amount of information that 
working memory processes at any one time (Sweller, 1988). In order 
to explain instructional effectiveness, cognitive load theory has defined 
two categories of cognitive load according to their function: intrinsic 
and extraneous cognitive load (Sweller, 1994, 2010). Both categories 
are determined by the level of element interactivity associated with 
the learning materials. Whereas intrinsic cognitive load is imposed 
by the element interactivity generated by the intrinsic structure of the 
learning material, the extraneous cognitive load is caused by the element 
interactivity generated by the presentation of the learning material. 
These two categories of cognitive load are considered additive and the 
total determines the working memory resources required to process the 
information (Sweller et al., 2011; Sweller et al., 1998).

Element interactivity
Learning material consists of elements or chunks of elements of 

information that need to be processed in order for learning to occur. 
Elements may be considered single items of information, or simple 
information structures. Logical connections between elements 
determine the level of element interactivity of the learning material 
(Sweller & Chandler, 1994). In other words, elements are connected 
in such a way that they make a meaningful construction. Element 
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interactivity refers to the extent to which elements interact with 
each other.

If elements in learning material do not interact then these elements 
can be learned separately. Such material is considered as having zero 
or very low element interactivity. On the other hand, some materials 
are considered high in element interactivity because many elements 
interact and can only make logical meaning if processed together. It can 
be recalled that prior knowledge, stored in long term memory, can be 
used to chunk information together. As a consequence, prior knowledge 
will also determine how many interacting elements can be chunked 
together in working memory. Accordingly, some materials that are high 
in element interactivity for beginner learners can be low in element 
interactivity for more advance learners.

An example of low element interactivity can be illustrated when 
learning about various geometrical shapes. A student can learn about 
a square without necessarily learning about a triangle at the same 
time, because in this context, considerations of interactivity between 
the shapes are unnecessarily to understand the basic concepts 
connected to a square. Therefore, the properties of each shape 
(square and triangle) can be learned in isolation from each other. 
However, learning to calculate the volume of a prism, which may 
require knowledge about triangles and squares, can be considered 
high in element interactivity because there are many elements that 
need to be processed simultaneously, such as the property of the 
prism, the base area, the height, the volume formula as well as the 
unit used in the calculation. Without simultaneously attending 
to these elements, the task cannot be understood or completed 
correctly. However, attending to all these elements simultaneously 
will increase the demands on working memory. But as knowledge 
about prisms builds, interacting elements will become chunked into 
larger single elements and decrease the burden on working memory. 
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Element interactivity can be used to describe understanding and task 
difficulty discussed next.

Understanding. Sweller (1994) proposed that the term 
understanding is more suitably applied to learning about materials with 
high element interactivity. As high element interactivity materials 
involve interconnected elements, total understanding will only be 
reached if the elements and the connections are considered at the 
same time. An understanding of high element interactivity material is 
achieved by making meaning of the connections between elements. As a 
consequence failure to connect some elements together will most likely 
cause a misunderstanding of the learning materials. It is argued that low 
element interactivity materials can be learned serially, because they do 
not necessarily relate to each other (Sweller et al., 1998). Any lack of 
knowledge about an element, or a failure to remember an element will 
not directly cause a misunderstanding of the other elements.

Task difficulty. Additionally, Sweller and Chandler (1994) argued 
that element interactivity can be used to determine why some material 
can be difficult to learn. Tasks can be considered complex if they are high 
in element interactivity (see Sweller et al., 2011; Sweller & Chandler, 
1994), and hence difficult to understand because of the number of 
interacting elements that need to be considered. Nevertheless, learning 
material consisting of low element interactivity can also be difficult to 
learn. For example, learning new vocabulary may be difficult to learn 
simply because of the total number of elements (new words) involved, 
even though the elements are independent of each other and may 
not interact.

Intrinsic cognitive load
Intrinsic cognitive load refers to the intrinsic nature of the learning 

materials themselves (Sweller, 1994; Sweller & Chandler, 1994; Sweller 
et al., 1998). Material that is low in element interactivity imposes a low 
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intrinsic cognitive load. Conversely, material that is high in element 
interactivity imposes a high intrinsic cognitive load.

Intrinsic cognitive load is usually considered fixed, although it can 
be reduced by altering the complexity of the learning task, such as by 
reducing the number of interacting elements (Ayres, 2006; Pollock, 
Chandler, & Sweller, 2002). Without changing the complexity of the 
task, the intrinsic nature of the material or the element interactivity 
level, remains unchanged (Sweller & Chandler, 1994). However, as 
learners obtain prior knowledge about specific materials, schemas 
enable interacting elements to be chunked together as more advanced 
single elements, thus reducing element interactivity (Mayer & Moreno, 
2003). Hence, for more advanced learners, specific materials may be 
considered quite simple; however, for less advanced learners the same 
materials may be considered complex and difficult to understand.

Extraneous cognitive load
The manner in which learned material is presented is the primary 

factor determining extraneous cognitive load (Sweller, 1994; Sweller & 
Chandler, 1994; Sweller et al., 1998). In contrast to intrinsic cognitive 
load, which is created by the actual materials to-be-learned, extraneous 
cognitive load is created by the teacher or instructional designer. For 
example, if students are asked to learn about a science topic but are 
given poorly formatted diagrams and instructions, more processing 
may be required to understand the diagrams and explanations rather 
than focusing on the actual learning content. In this case, precious 
working memory resources are taken up by processing information that 
is irrelevant, or extraneous to learning. In such cases, the extraneous 
processing can directly interfere with learning.

Sweller (2010) has argued that extraneous cognitive load can 
also be described in terms of element interactivity. Whereas element 
interactivity can indicate the intrinsic characteristics of the learning 
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materials, element interactivity can also indicate the connectivity of 
elements presented by the instructional materials. If the instructional 
materials are low in elementary interactivity then learning is more 
likely to occur because fewer working memory resources are needed. 
On the other hand, if the instructional materials are high in element 
interactivity then learning will be more likely interfered with, as more 
working memory resources will be needed. Just as intrinsic load can 
have different levels of complexity, so can extraneous load.

The majority of research on cognitive load theory has been to 
investigate strategies to decrease extraneous cognitive load (Mayer 
& Moreno, 2003; Sweller et al., 2011; Sweller et al., 1998). Effective 
instructional designers will try to lower extraneous cognitive load by 
modifying the presentation of learning materials accordingly. Cognitive 
load theory is particularly concerned with decreasing extraneous 
cognitive load when the learning materials impose high intrinsic 
cognitive load, in order to promote learning.

Germane cognitive load
In addition to intrinsic and extraneous cognitive load, the working 

memory load actually invested in schema acquisition (learning) has 
been defined as the germane cognitive load. Originally conceptualised 
by Sweller et al. (1998) as an independent load, more recently germane 
load has been linked directly to intrinsic cognitive load. The working 
memory resources used to deal directly with the intrinsic cognitive load 
are now considered germane load as the cognitive process are directed 
towards a learning goal (Sweller, 2010; Sweller et al., 2011). Using 
working memory resources to deal with the extraneous load is not 
germane because schema acquisition is not directly facilitated.

Germane cognitive load involves activities that are relevant to 
learning, such as eliciting self explanation (Paas & Van Gog, 2006). 
Paas & Van Gog (2006) suggested that requiring learners to generate 
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explanations underlying the solution steps can stimulate them to invest 
working memory load for activities relevant to learning.

It is worth noting that during the earlier development of cognitive 
load theory, the total cognitive load was calculated by adding the three 
loads together (Sweller et al., 1998). This belief has been recently 
reformed, and now the total load is defined as the amount of cognitive 
load generated by the intrinsic and extraneous loads added together 
(Kalyuga, 2011; Sweller, 2010; Sweller et al., 2011). If the total cognitive 
load required is below the working memory limit, then the freed 
resources can be allocated to the germane cognitive load to help schema 
construction (Paas & Van Gog, 2006; Paas & van Merriënboer, 1994; 
Pass et al., 2004).

Summary

This chapter discussed the theoretical framework of cognitive load 
theory from the perspective of evolutionary educational psychology. 
It showed how human cognitive architecture underpins cognitive 
load theory and uses an analogy with natural information processing 
systems. Geary's knowledge categorisation into biologically primary 
and secondary knowledge was also discussed. This distinction is used 
to show which knowledge humans have evolved to acquire (primary), 
and which knowledge requires well-structured learning environments 
(secondary).

Subsequently, five principles underlying cognitive load theory 
were described. Generally, these principles demonstrate: (1) why the 
cognitive processes require an unlimited long term memory; (2) how 
human cognition constructs schematic knowledge by borrowing from 
others; (3) how human cognition interacts with unfamiliar information 
and as a consequence constructs new knowledge; (4) why working 
memory has a limited capacity; and (5) how human cognition interacts 
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with the environment, and the importance of the interactions between 
working memory and long term memory.

Two categories of cognitive load, intrinsic and extraneous, were 
also detailed using the concept of element interactivity. Germane 
cognitive load was also defined as the load directly invested in schema 
acquisition, and specifically linked to intrinsic cognitive load. Intrinsic 
and extraneous cognitive load are additive and form the total cognitive 
load. For the most effective learning to occur, the total cognitive load 
must not exceed the working memory capacity of the learner. While the 
intrinsic cognitive load is unchangeable due to its innate nature, unless 
the task is altered in some way, the extraneous cognitive load, which is 
generated by the instructional designer, must be kept at a low level in 
order to create the most effective learning environment.
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Chapter V

Cognitive Load Effects

Cognitive load theory was developed in the early 1980s and the 
initial research was focused on the search for alternatives to conventional 
problem solving strategies. Considerable evidence was collected which 
indicated that asking students to acquire knowledge through problem 
solving was ineffective due to a heavy reliance on means-ends analysis. 
As previously described, means-ends analysis is a general problem 
solving strategy that is used when there is lack of prior knowledge. 
However, means-ends analysis creates extraneous cognitive load and 
thus inhibits learning. This chapter reports on the cognitive load theory 
research that has investigated the different types of extraneous load and 
the strategies used to reduce its impact.

How Means-Ends Analysis Increases Extraneous Cognitive Load

Means-ends analysis has been discussed in previous chapter and 
in this section is discussed in detail how it causes extraneous cognitive 
load during learning.

Initial evidence for the use of means-ends analysis was accumulated 
using maze puzzle problems (Mawer & Sweller, 1982; Sweller, Mawer, 
& Howe, 1982). Sweller and Levine (1982) found that means-ends 
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analysis was used by problem solvers who were given the final goal 
location of a maze. Although they could often find the solution to 
the maze, they learnt little about the problem structure. Additionally, 
they made more errors when solving the problem and were less able to 
transfer their knowledge about the maze compared to problem solvers 
who could not observe the maze's goal location. Sweller and Levine 
argued that providing information about the finish location of the 
maze caused problem solvers to pay more attention to the goal rather 
than learn about the problem structure. Therefore, they concluded 
that means-ends analysis did not necessarily facilitate learning.  Much 
stronger learning was achieved by removing the goal from the sight of 
the problem solvers.

Means-ends analysis leads problem solvers to try to reduce the 
distance between the problem state and problem goal by generating 
a system of sub-goals that have to be considered to find the final 
solution (Ayres & Sweller, 1990; Sweller, 1988). Sweller (1988) argued 
that during means-ends analysis, problem solvers have to pay more 
attention to a sub-goal by working backwards from the goal, rather 
than applying previously learnt knowledge about solution paths. This is 
contradictory to schema acquisition, where more attention needs to be 
directed towards problem states and associated moves. Further, during 
means-ends analysis, problem solvers must simultaneously consider the 
problem state, the goal state, the relation between these, and the relation 
between problem solving operators, while also considering a  sequence 
of sub-goals. Simultaneously handling a large number of elements 
requires a heavy use of working memory capacity, and thus learning is 
hindered.

In sum, presenting novel problems, such as the maze problem 
previously noted, causes the use of means-ends analysis, which requires 
a heavy use of cognitive processing. By asking learners to solve problems 
without direct instruction, instructional designers or teachers are 
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creating extraneous cognitive load. To prevent the use of means-ends 
analysis and the generation of extraneous cognitive load, Sweller and 
colleagues devised and tested two alternative learning strategies: (1) 
goal-free problems, and (2) worked examples. The following section 
discusses these two strategies.

The Goal-Free Effect

Goal-free problems are also known as no-goal problems. 
Considerable evidence has shown that a goal free strategy is a superior 
learning strategy to conventional problem solving, and its effect is called 
the goal-free or goal-specificity effect (Sweller et al., 2011). To use the 
goal-free strategy, acquisition problems are presented without a specific 
goal. By removing the goal, means ends analysis becomes impossible 
because problem solvers cannot work backwards from a goal, as there 
is no goal. Instead, learners are directed to solve the problem using a 
forward strategy based on the problem statement. Sweller and Levine 
(1982) identified the goal-free effect in their maze- tracking research. 
As discussed previously, when problem solvers were presented with the 
goal, they tended to use means-ends analysis and did not learn about the 
problem structure. On the other hand, when problem solvers were not 
presented with the goal, they attempted to use a solution rule they had 
learned and hence developed knowledge about the problem structure.

In a series of four experiments, Sweller, Mawer, and Ward (1983) 
tested if goal free problems would eliminate the use of means ends 
analysis. They predicted that substituting the instruction to find a specific 
variable with goal free instructions, as well as removing the goal, would 
reduce the use of a means ends strategy. Using geometry problems, where 
students had to find angles using specific theorems, during acquisition 
a goal free group was given the instruction “Calculate the value of as 
many angles as possible” for problems where the goal had been removed. 
In contrast, a goal group had a clearly defined goal (angle X), and were 
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given the specific instruction “Calculate the value of X” (Sweller, et al., 
1983, p. 653). Overall the results found a goal free effect, as students 
who were provided with goal free problems during the acquisition phase, 
performed better on later goal-specific tests than students who were 
given conventional goals during acquisition (Sweller et al., 1983).

Figure 10. Example of goal-free problem

Figure 11. Example of goal-given problem

Similarly, Owen and Sweller (1985) investigated goal free problems 
in trigonometry, where triangle sides needed to be calculated. Again 
during the acquisition phase the goal was removed for a goal-free group 
who were asked to “find the length of all unknown sides”, while the 
goal group used conventional problem solving to find a fixed goal (a 
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given side of the triangle). Owen and Sweller found that the goal-free 
group made fewer errors than the goal group, and had better transfer 
performance.

In an attempt to capture error patterns when solving novel problems, 
Ayres and Sweller (1990) conducted a series of experiments using multi-
step geometric problems for high school students (calculating angles). It 
was confirmed that most errors occurred during sub-goal calculations 
as a result of using means ends analysis. By removing the goal, and 
modifying the goal statement into “find all unknown angles”, instead 
of  “find x” (Ayres, 1993, p. 378), it was found that goal-free problems 
prevented the use of means ends analysis and led to superior learning.

Further evidence for the goal free effect has also been demonstrated 
by several studies. Bobis, Sweller, and Cooper (1994) used primary 
school children learning about geometrical paper folding; Vollmeyer, 
Burns, and Holyoak (1996) used university students studying biology; 
Paas, Camp, and Rikers (2001) used elderly people who were learning 
computerised mazes; and Wirth, Künsting, and Leutner (2009) used 
high school students examining computerised physics problems.

There are some possible limitations to the goal-free effect. The 
applicability of goal-free problems in classroom learning with time 
restrictions, where finding many irrelevant 'unknowns' (e.g., sides and 
angles can be found), may result in many unnecessary calculations that 
detract from focusing on the most important structures (Sweller et al., 
2011). Additionally, when the aim is to learn about an application of a 
specific procedure, a defined goal may be more suitable (Wirth et al., 
2009). Therefore, although the use of goal-free problems does reduce 
the use of backward- working strategies, this can come at a cost.

The worked example strategy was developed to overcome these 
limitations. The following section discusses the worked example effect 
and the required format for worked examples to be successful.
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The Worked Example Effect

In a conventional learning environment, a worked example is 
commonly used to demonstrate how to solve a type of problem, which 
is then followed by practice on a number of similar and/or transfer 
problems. Mathematics or other computational learning domains 
have used worked examples for this purpose. Moreno (2006) describes 
worked examples as instructional devices for learning a specific problem 
solving skill. Worked examples usually include the problem statement 
and step-by- step moves leading to the final solution (Ayres & Sweller, 
2013). Further, as R. K. Atkinson et al. (2000) commented worked 
examples should show an expert's problem solving model for learners 
to study and imitate.

How worked examples reduce extraneous cognitive load
Cognitive load theorists have advocated worked examples as an 

effective strategy to reduce extraneous cognitive load and facilitate 
effective schema acquisition. Essentially worked examples eliminate 
the use of means-ends analysis (Sweller et al., 1998) by presenting a 
solution to study rather than asking students to find one. According to 
cognitive load theory, when learners who are given worked examples 
during acquisition perform better on subsequent tests than learners who 
are given the same problems to solve during acquisition, the worked 
example effect occurs (Sweller et al., 1998). Sweller et al. argued that when 
learners are provided with worked examples to study, they are directed 
to pay attention to the problem states and the various associated moves, 
rather than focusing on the goal. Knowledge acquired from worked 
examples also decreases the chance of using means-ends analysis when 
given similar problems; hence when studying worked examples, working 
memory load is devoted to schema acquisition and automation.

Furthermore, Sweller (2006) illustrated that learning from worked 
examples is an example of the borrowing principle, and learning by 
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solving novel problems is an example of the randomness as genesis 
principle. A worked example can be deemed the representation of 
knowledge from an expert's long term memory. Accordingly, worked 
examples can be used to acquire new knowledge via the borrowing 
principle. When relevant information is either inaccessible or does not 
exist, learning through problem solving occurs via the randomness as 
genesis principle. As was discussed in Chapter 2, acquiring knowledge 
via the borrowing principle is more likely to be effective because it 
imposes a lower cognitive load compared to the randomness as genesis 
principle.

R. K. Atkinson et al. (2000) reported that research into the use 
of worked examples has been carried out for more than six decades; 
however, in the 1980s, researchers paid more attention to the strategy 
as an alternative to the ineffective problem solving methods (e.g., 
means-ends analysis). Most of the original research used controlled 
experiments to test the prediction that learning novel (complex) 
problems from worked examples is more advantageous compared to 
learning by problem solving only (Cooper & Sweller, 1987; Sweller & 
Cooper, 1985; Zhu & Simon, 1987). The following section discusses the 
empirical evidence in support of the worked example effect.

Initial evidence for the worked example effect
The initial evidence that worked examples can facilitate knowledge 

acquisition was provided by Sweller and Cooper (1985). They predicted 
that worked examples can be used to direct learners' attention away 
from the goal of a problem to the relations between problem states and 
associated moves. In a series of four experiments using a high school 
algebra topic, learning with worked examples was compared to learning 
through problem solving. In the initial acquisition phase, the worked 
example group used pairs of worked examples and similar conventional 
problems. For each pair students were required to study a problem and 
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then solve a similar problem. The problem solving group was given the 
identical problem pairs to those in the worked example condition, but 
all problems were presented as conventional problems which students 
had to solve. In the first two experiments, the acquisition phase was 
followed immediately by a test consisting of problems similar to those 
in the acquisition phase. The results indicated that the worked example 
group spent substantially less time solving the problems and made 
fewer errors.

To test whether worked examples facilitated transfer to dissimilar 
problems, the last two experiments included transfer problems in the test 
phase. No significant difference was found for these transfer problems. 
It was suspected that the relatively limited number of problem types 
used in the acquisition phase might have hindered transfer. Sweller 
and Cooper (1985) concluded that while the use of worked examples 
facilitated schema acquisition, the strategy was only beneficial on a 
restricted range of problems.

In a follow up study, Cooper and Sweller (1987) argued that their 
original work (1985) did not show transfer effects because the acquisition 
phase was too short and the learning material might have extended 
the working memory load too much to promote schema acquisition 
and automation. Cooper and Sweller (1987) predicted that if learners 
have sufficient time during acquisition, schemas would become more 
automated, leading to greater transfer. To test this prediction through 
worked examples, they conducted a series of experiments using less 
complex material rather than those that they used previously (1985) 
and provided more learning time.

Cooper and Sweller (1987) found that the worked example group 
required less time during the acquisition phase compared with the 
conventional problem solving group. While there was no significant 
difference between groups in similar test results, a significant difference 
was found for the transfer problems, with less completion time 



Chapter V
Cognitive Load Effects 67

needed and less errors made by the worked example group. Since the 
problems were less complex and sufficient time was provided during 
the acquisition phase, both conditions facilitated schema acquisition 
for similar test problems. However, the schema automation required 
for transfer problems was only facilitated under the worked example 
condition.

Both studies by Sweller and Cooper described above have become 
influential because they provided the initial evidence that learning by 
worked examples can be more effective than conventional problem 
solving. It was argued that worked examples eliminate the use of means-
ends analysis that imposes a heavy cognitive load. As worked examples 
considerably reduce this extraneous cognitive load more working 
memory resources are available for schema acquisition and automation.

More evidence for the worked example effect in mathematics was 
provided by Zhu and Simon (1987) in their longitudinal study using a 
3-year curriculum in algebra and geometry in a Chinese middle school. 
Zhu and Simon found that students studying the worked examples 
could complete the three-year course in only two years. Research by 
Tarmizi and Sweller (1988) using geometry also found the worked 
example effect, once split-attention was avoided (more detail on split-
attention is given later). Further evidence of the worked example effect 
were provided by Chi, Bassok, Lewis, Reimann, and Glasser (1989) 
using college physics, and Ward and Sweller (1990) using geometric 
optics and kinematics.

The growth of research on the worked example effect
Since this early research, a massive amount of research examining 

the effectiveness of worked examples have been completed, not only in 
mathematics and its applications which have more-structured procedures 
(for review, see R. K. Atkinson et al., 2000; Ayres & Sweller, 2013; Sweller 
et al., 2011), but also in less- structured tasks, such as learning musical 
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notation (Owens & Sweller, 2007), visual art recognition (Rourke & 
Sweller, 2009), text interpretation (Oksa, Kalyuga, & Chandler, 2010), 
legal case reasoning (Nievelstein, van Gog, van Dijck, & Boshuizen, 
2013), and essay writing (Kyun, Kalyuga, & Sweller, 2013). Worked 
example instructions have also been implemented in multimedia (e.g., 
Moreno & Mayer, 1999; Mousavi, Low, & Sweller, 1995), hypermedia 
(e.g., Gerjets, Scheiter, & Schuh, 2008), and web-based learning 
environments (e.g., Crippen & Earl, 2007). All these studies provided 
strong evidence of the worked example effect, indicating that the effect 
is not limited to a particular domain or learning setting.

Cognitive load researchers have investigated variations of the 
format of worked examples in order to accommodate different 
learning materials and the characteristics of the learner. In turn, several 
factors that moderate the effectiveness of worked examples have been 
identified. These factors are usually explained in terms of whether the 
modified instruction format reduces or increases either extraneous or 
intrinsic cognitive loads. Cognitive load theory has derived instructional 
principles based on these findings, as the following discussion indicates.

Variations to Worked Examples

Most research on worked examples has demonstrated the 
effectiveness of learning from worked examples rather than learning 
by solving conventional problems. The worked example instruction 
usually combines worked examples and a similar problem solving task. 
However, researchers have implemented the instruction in different 
ways. Therefore, further cognitive load effects have been generated 
based on the variations of the instruction.

The alternation strategy: Study one - Solve one
An important consideration for teachers and instructional designers 

is how to structure worked examples. When testing the worked example 
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effect for the first time, Sweller and Cooper (1985) presented pairs 
of worked examples and structurally identical problems to be solved. 
Sweller and Cooper “assumed that motivation, while reading a worked 
example, would be increased by the knowledge that a similar problem 
would need to be solve immediately afterwards” (1985, p. 69). Many 
researchers who have investigated the worked example effect adopted 
this alternation format in their study (Sweller et al., 2011). An example 
of alternating worked examples with similar problem can be seen in 
Figure 12.

Figure 12. An example of alternating worked examples 
with a similar problem to-be-solved.
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Trafton and Reiser (1993) provided direct evidence of the 
effectiveness of the alternation format compared to a blocked format. 
As can be seen in Figure 13, two alternating format conditions were 
investigated; students were either given pairs of an example to study and 
a similar problem to solve, or pairs of two similar problems to solve. And 
there were two blocked formats; students were given a set of examples to 
study, and then a set of similar problems to solve; or a set of problems 
to solve, followed by a set of similar problems to solve.

Alternating  
Example

Alternating  
Problem Solving

Blocked 
Example

Blocked 
Problem Solving

•	 Study example 1a
•	 Solve similar 

problem 1b

•	 Solve problem 1a
•	 Solve similar 

problem 1b

•	 Study example 1a
•	 Study example 2a
•	 and so on

•	 Solve problem 1a
•	 Solve problem 2a
•	 and so on

•	 Study example 2a
•	 Solve similar 

problem 2b
•	 and so on

•	 Solve problem 2a
•	 Solve similar 

problem 2b 
•	 and so on

•	 Solve similar 
problem 1b

•	 Solve similar 
problem 2b

•	 and so on

•	 Solve similar 
problem 1b

•	 Solve similar 
problem 2b

•	 and so on

Figure 13. Alternating or blocked formats, adapted from Trafton and Reiser (1993)

Trafton and Reiser (1993) found that the most efficient strategy 
was the alternating example format, where a similar problem to solve 
was given immediately after each worked example was presented to 
study. The alternating problem solving or the blocked problem solving 
formats were not efficient strategies, and the blocked example format 
was found to be the least efficient overall.

More recently, van Gog, Kester, and Paas (2011) compared 
the alternation strategy, example–problem pairs, to the other three 
strategies: problem–example pairs, examples only and problems only. 
As found by Trafton and Reiser (1993), example–problem pairs were an 
effective strategy compared to the problem–example pairs and problems 
only. Additionally, they found that the effectiveness of the example–
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problem pairs was not significantly different from giving the examples 
only. And also, the effectiveness of the problem–example pairs was not 
significantly different than the problems only. Furthermore, Reisslein, 
Atkinson, Seeling, and Reisslein (2006) observed that low prior 
knowledge students benefited from example–problem pairs; but, on the 
other hand, high prior knowledge students benefited from problem–
example pairs (see the expertise reversal effect in following section). 
Consequently, it can be concluded that the original alternation format 
of Sweller and Cooper (1985) was an effective method for structuring 
worked examples, especially for learning novel materials.

The problem completion effect
When studying worked examples, teachers/ instructors have to 

insure that the learner is attending to the task. Although most worked 
examples provide full solution steps, Chi et al. (1989) found that most 
low prior knowledge students did not try to fully read and study all the 
solution steps provided in the examples. To overcome this potential 
problem, van Merriënboer (1990) suggested the use of completion 
problems that require learners to complete some key solution steps in 
the worked examples by themselves. Using an introductory computer 
programming task, van Merriënboer showed that this strategy can be 
just as effective as studying worked examples with complete solution 
steps, particularly when worked examples have many solution steps.

Using the learning domain of statistics, Paas (1992) investigated 
the effect of completion problems by comparing three groups: partially 
completed worked examples, worked examples and conventional 
problems. Results indicated that the completion and worked example 
conditions resulted in significantly higher performance than conventional 
problem solving condition. In addition, Paas found that the completion 
and worked example conditions required a significantly shorter study 
time than conventional condition. Paas also used a subjective scale to 
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measure perceived mental effort during the tests, demonstrating that 
that the conventional group invested more mental effort than the other 
two groups. In other words, students in the problem solving group were 
learning very inefficiently as they had a lower level of test performance, 
but invested more mental effort (experienced higher cognitive load).

It has been argued that by partially completing the example, learners 
are guided to pay more attention to the problem state and the provided 
key solution steps while filling the incomplete solution steps (Sweller 
et al., 2011). Sweller et al. contend that completion problems might be 
considered a combination of worked examples and problem solving, and 
can be used as an alternative format to standard worked examples. In 
further research, completion problems have been used to generate the 
fading guidance effect (see following Section), as a consequence of the 
expertise reversal effect, which is discussed next.

The expertise reversal effect
The expertise reversal effect occurs when an instructional strategy 

that is effective for low prior knowledge is inefficient for high prior 
knowledge learners (see Kalyuga, Ayres, Chandler, & Sweller, 2003). 
It is argued that the prior knowledge of more experience learners will 
interact with the presented instructional materials, replicating the same 
information and leading to redundancy. Redundancy creates extraneous 
cognitive load for the learners and ultimately interferes with learning 
(the redundancy effect is discussed further in following Section).

Early evidence for the expertise reversal effect was found by 
Yeung, Jin, and Sweller (1997). Using English reading passages and 
the explanatory notes, Yeung et al. (1997) examined the affect of 
split attention and integrated formats on students with low and high 
expertise in the domain (see the split attention effect Section). In the 
comprehension test, they found that high prior knowledge students 
benefited from the split attention format but not from the integrated 
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format, as it was redundant. In contrast, low prior knowledge students 
benefited from the integrated format, but not from the split attention 
format, which created extraneous load. Similar findings were found by 
Kalyuga, Chandler, and Sweller (1998) using electrical circuit problems 
where instructions based on split attention were compared to an 
integrated format. Again the integrated format, which was helpful in 
overcoming split-attention for low knowledge learners, was found to be 
ineffective for high knowledge learners.

More evidence of the expertise reversal effect was provided by 
Tuovinen and Sweller (1999). In this study the effectiveness of worked 
examples was tested against an exploration practice (conventional 
problem solving). Using database-programming tasks for college 
students, Tuovinen and Sweller found that only students with no prior 
experience with database programs benefited from worked examples. 
For students with some experience in the domain, the effectiveness of 
worked examples was negligible.

Kalyuga, Chandler, and Sweller (2001) investigated the interactions 
between worked examples, expertise, and problem complexity. When 
learning about more complex tasks, novice learners initially benefited 
from worked examples compared to a conventional problem strategy 
(exploratory learning). But after two training periods with worked 
examples, learner expertise increased and the worked example effect 
disappeared. In fact, the exploratory learning strategy became more 
effective than the worked example strategy.

As mentioned previously, Reisslein et al. (2006) found that example–
problem pairs were more effective for low prior knowledge students 
since the examples assisted them with initial knowledge acquisition. 
Additionally, the high prior knowledge students may have received 
an advantage from the problem–example pairs because they already 
had sufficient prior knowledge to solve the initial problem, and the 
subsequent example may have provided useful feedback.
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The expertise reversal effect was also demonstrated by Pollock et 
al. (2002) in a study designed to lower intrinsic cognitive load using 
worked examples. Pollock et al. (2002) reduced the element interactivity 
of complex tasks by isolating their element before introducing the 
tasks with fully interacting elements. This 2-stage strategy benefited less 
knowledgeable learners, but not more knowledgeable learners. It was 
argued that high knowledge learners were already able to maintain and 
process tasks that consisted of fully interacting elements, but not low 
knowledge learners. Further, Ayres (2006) also showed that low prior 
knowledge students benefited from an isolated-element (or partial) 
approach, whereas high prior knowledge students benefited only from 
fully interacting-element tasks (see also Ayres, 2012).

Much evidence in support of the expertise reversal effect has been 
accumulated by cognitive load theorists (see Ayres & Paas, 2007; 
Sweller et al., 2011). Overall the findings highlight the importance of 
considering levels of prior knowledge when designing instructions. In 
the case of worked example instructions, if the information presented 
in a worked example has already been acquired by learners, the worked 
example will be redundant and will lead to the expertise reversal effect. 
In such situations, learners would be able to learn through problem 
solving. Considerations of the expertise reversal effect were used to 
develop the guidance fading strategy.

The guidance fading strategy
The guidance fading strategy uses a combination of worked examples, 

completion problems, and problem solving which are presented 
sequentially, and designed to facilitate a smooth transition from novice to 
more experienced learners (R. K. Atkinson, Renkl, & Merrill, 2003; Renkl 
& Atkinson, 2003; Renkl, Atkinson, Maier, & Staley, 2002). Underlying 
this strategy is the expertise reversal effect, because, as expertise develops, 
less direct guidance from worked examples is required.
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Renkl et al. (2002) suggested two fading techniques, backwards and 
forwards. In a series of backward fading techniques, the first worked 
example is fully completed, the second worked example has the solution 
to the final step removed, the third has the two last steps removed, and 
so forth, until the final example presents the whole problem to-be-
solved only. Learners are expected to fill in the steps, whose number 
increases as expertise develops. For the forward fading technique, the 
series occurs in the opposite direction. The first step of the worked out 
solution is incomplete, then the second step is removed, and so forth, 
in a forward direction until the full incomplete problem is presented.

According to Renkl et al. (2002) the backward fading technique 
is more favourable for low prior knowledge learners since it provides 
a full worked example at the beginning of the learning phase, which 
is critical in assisting initial knowledge acquisition. Renkl et al. (2002) 
found the guidance fading strategy to be an effective technique to 
facilitate the transition from novice to expert, compared to a series of 
fully worked examples.

In addition to Renkl et al.'s findings, Reisslein, Sullivan, and Reisslein 
(2007) reported that slow fading strategy was more advantageous for 
low prior knowledge students transitioning from worked example 
stage to independent problem solving. Slow fading strategy uses a 
backward fading technique that provides students with a longer phase 
of knowledge acquisition. In contrast,a fast fading strategy,was found to 
be more advantageous for high prior knowledge students.

Extraneous Cognitive Load Caused by Worked Example Designs

Cognitive load theory has been particularly concerned that the 
instructional design of worked example is aligned with the learner's 
cognitive capacity (Sweller et al., 2011). Two general cognitive effects 
have been identified as a source of extraneous cognitive load which impact 
on worked example designs: the split attention and redundancy effects.
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The split attention effect
Split attention occurs when multiple sources of information that 

cannot be understood in isolation are presented separately in terms of 
space or time, and as a result, learners are required to split their attention 
while mentally integrating the different sources of information (Ayres 
& Sweller, 2005; Sweller et al., 2011; Sweller et al., 1998). Mental 
integration in this case involves searching and matching information 
from the different sources as well as linking the relationships between 
the information. This process increases extraneous cognitive load 
and reduces learning. Extraneous cognitive load can be reduced by 
integrating the sources of information, as the amount of searching 
and matching can be lowered. For example in the case of explanatory 
text and diagrams the related sources of information should be placed 
near each other on the page. The split attention effect occurs when 
split-attention based instruction produces significantly lower learning 
outcomes compared to integrated based instruction (Sweller et al., 
2011). Specifically, split attention caused by information separated 
in space is called the spatial contiguity effect, and when separated by 
time (sequential presentation) is called the temporal contiguity effect 
(Mayer, 2001).

This effect was initially investigated by Tarmizi and Sweller (1988) 
using circle geometry in a series of five experiments. After failing to 
find the worked example effect in the first three experiments, Tarmizi 
and Sweller modified their worked examples to an integrated format by 
placing the associated explanatory text within the geometric diagram, 
rather than below the diagram as traditionally presented. Having done 
this, the integrated format was found to be more effective compared 
to the traditional text-diagram format which caused split attention.
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(a)

Figure 14. (a) An example of split attention caused by the diagram 
and related explanation and (b) the integrated format, adapted 

from Sweller, Chandler, Tierney, and Cooper (1990)
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Split attention often appears in traditional geometry and coordinate 
geometry textbooks, where a diagram and the associated explanation 
are presented separately. For example, Sweller et al. (1990) illustrated 
that the coordinate diagram and explanation to find the coordinates of 
a point are usually separated (see Figure 14.a). Sweller et al. found the 
integrated format, as shown in Figure 14.b, was more useful for learning 
than the split-attention format.

Significant evidence has been found in support of the split attention 
effect (for review, see Ayres & Sweller, 2005; Ginns, 2006). A multimedia 
alternative to avoid split-attention materials is to use a combination of 
both auditory and visual sources of information ( Jeung, Chandler, & 
Sweller, 1997; Mayer, 2001; Mayer & Moreno, 2003; Mousavi et al., 
1995). This strategy is known as the modality effect, and is successful 
because it allows learners to examine the picture or diagram while 
simultaneously listening to an explanation. The search processes caused 
by split- attention are consequently reduced.

In summary, split-attention materials will impact negatively on 
learning, including the use of worked examples, unless learners have a 
high degree of prior knowledge. The effect can be avoided by integrating 
the different sources of information.

The redundancy effect
Redundancy occurs when multiple sources of information that 

can be understood in isolation are presented simultaneously. In other 
words, different sources of information repeat the same information. A 
common example of redundancy can be found when a speaker reads 
to the audience, word-for-word, the information already presented on 
a power-point slide. Consequently, studying worked examples with 
redundant information will also be disadvantageous (Sweller et al., 
2011; Sweller et al., 1998). The negative impact occurs when learners 
attend to the different sources of information and attempt to establish 
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relations between them (see Sweller & Chandler, 1994). A direct 
consequence is that the redundant information must be omitted to avoid 
excessive extraneous cognitive load. The redundancy effect occurs when 
learning materials containing no redundant information are found to 
be more effective than the materials containing redundant information. 
Nevertheless, like most cognitive load effects, this effect occurs mostly 
when the material has a high element interactivity (Sweller & Chandler, 
1994).

Initial evidence for the redundancy effect was demonstrated by 
Chandler and Sweller (1991) using electrical engineering and biology 
materials. To avoid split- attention, Chandler and Sweller designed an 
integrated instructional format where the integration of a diagram and 
text was not actually required because the diagram was self-explanatory, 
and compared this strategy with a single source of instruction containing 
only the diagram. The results indicated that the design which included 
only a diagram was superior to the dual-mode design. It was argued 
that the explanatory material provided in the integrated instructional 
group was disadvantageous because it imposed extraneous cognitive 
load caused by unnecessary processing.

Since this initial study was conducted, considerable evidence 
in support of the effect has been collected (for example, see Diao & 
Sweller, 2007; Kalyuga, Chandler, & Sweller, 1999).

Additionally, van Gog, Paas, and van Merriënboer (2006) found 
that adding lengthy textual explanations to worked examples may 
cause the redundancy effect. Distinguishing between a process-oriented 
worked example, where additional information about why and how 
the solution steps are chosen are added to the example, and a product-
oriented worked example which only shows solution steps, van Gog et 
al. (2006) found the product-oriented worked examples to be superior. 
For electrical circuit problems, the process-oriented worked example 
created redundancy because the learners had to process the essential 
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information (solution steps) and the additional information (process 
information), which was not necessarily related to the understanding 
of the solution steps. As a consequence, the process-oriented worked 
examples imposed a heavier cognitive load and inhibited learning.

At a later date, van Gog, Paas, and van Merriënboer (2008) revisited 
process and product oriented worked examples by investigating four 
different sequences: product–product, product–process, process–
product and process–process. It was found that the sequence of process–
product oriented worked examples was most advantageous for low 
prior knowledge learners, but not for high prior knowledge learners. 
Arguably, low knowledge learners benefited by process oriented worked 
examples at the initial stage of knowledge acquisition but once expertise 
increased, process oriented worked examples became redundant and 
caused extraneous cognitive load. This finding added more evidence in 
support of the expertise reversal effect discussed above.

Promoting Germane Cognitive Load

Briefly, as previously noted, germane cognitive load can be described 
as the working memory resources devoted to dealing with the intrinsic 
cognitive load presented by the learning material. This cognitive load is 
considered a ‘good’ or effective load since it directs working memory to 
activities that support schema acquisition and automation (see Chapter 
2). Two cognitive load theory effects have been generated from the 
implementation of worked example instructions aimed at specifically 
promoting germane cognitive load: namely, the variability and the self- 
explanation effects.

The variability effect
It is not unusual for instructors to provide multiple worked 

examples, consisting of very similar examples, or a wide range of 
different examples. High variability worked examples present a wide 
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range of different problems that utilise the same concept or procedure. 
According to the variability effect, worked examples with highly variable 
features improve learning compared to worked examples with more 
similar features (Sweller et al., 2011; Sweller et al., 1998).

Using a geometry task in computer numerically controlled 
machinery programming, Paas and van Merriënboer (1994) examined 
the effectiveness of studying worked examples under a number of 
conditions, including a set of problem-example pairs with low and high 
variability. Worked examples with low variability had only differences 
in numerical values, but in those with high variability, there were 
differences in both values and problem formats, including problem goals 
and problem settings.  The results suggested that high variability worked 
examples were superior to those with low variability. Paas and van 
Merriënboer argued that problem situation variability could motivate 
students to improve schema acquisition and automation while they are 
learning to recognise the key feature between modified problems, hence 
imposing a high germane cognitive load.

Quilici and Mayer (1996) presented worked examples in statistics 
word problems, with high variability in terms of structural and surface 
features. They argued that worked examples can be used to assist learners 
solving similar problems through analogical reasoning, where learners 
can extract and map the surface or structural feature of the worked 
example to the problem they are attempting to solve. Surface variability 
was determined by the attributes of the objects illustrated by the cover 
story of the word problems, while structural variability was defined by 
variations of relations among objects within the solution procedure. 
Their findings indicated that the high variability structure, emphasising 
examples facilitated better learning than the surface emphasising 
examples. Catrambone (1994) further found that transfer skills would 
be facilitated when variations in sub-goals were emphasised. Similarly, 
Renkl, Stark, Gruber, and Mandl (1998) demonstrated that a block of 
multiple examples were superior to a block of uniform examples.
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The self-explanation effect
Earlier research on worked examples conducted by Chi et al. 

(1989) discovered that  self-explanation methods helped high 
achievers process worked examples in a more meaningful manner. 
For this reason, researchers argue that asking learners to self-explain, 
like more knowledgeable learners (e.g., prompting them to elaborate 
solution steps), improves learning from worked examples since it directs 
germane working memory resources to deal with essential elements that 
constitute the new knowledge demonstrated in the worked out solution 
(Chi, De Leeuw, Chiu, & Lavancher, 1994; Renkl, 1997b, 2002).

The self-explanation effect occurs when adding self-explanations 
improves learning from worked examples compared to not adding 
self-explanations. The studies of Catrambone (1994) and Renkl et al. 
(1998) have shown that eliciting self- explanations, especially with high 
variability, tended to improve the effectiveness of worked examples. 
Moreover, R. K. Atkinson et al. (2003) found that low ability students 
benefited from self-explanation prompts that were provided with each 
solution step of the worked examples, compared to students who were 
not given self- explanation prompts.

Renkl et al. (1998) explored the benefit of training students to self-
explain by comparing two groups: explicit training and general training. 
In explicit training, the participants were given a short training session 
covering essential components in self- explanation, an example of 
self-explanation as well as coached practice. In general training, the 
participants were given thinking-aloud training. It was found that 
the explicit self-explanation training was superior and, in particular, 
benefited the low knowledgeable learners.

Despite some positive results in favour of self-explanations, there 
have also been some negative effects. Using molar and modular worked 
examples, Gerjets, Scheiter, and Catrambone (2006) found that self-
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explanation instruction was not advantageous. Gerjets et al. (2006) 
illustrated that the main distinction between molar and modular is that 
molar examples emphasise problem categories while modular examples 
emphasise procedural solutions. It was found that modular examples 
were more effective and self-explanation was not advantageous for 
both. Gerjets et al. argued that the examples had written explanations 
and therefore may be already intelligible; hence the self-explanation 
prompts forced learners to process redundant information contained 
within the examples and their elaborations.

Additionally, Große and Renkl (2006) found that self-explanation 
instruction did not enhance learning using either the multiple solutions 
or uniform solutions of worked examples. Moreover, when learners were 
given incorrectly worked out solutions and asked to self-explain, the 
quality of self-explanations decreased, especially for more able learners 
(Große & Renkl, 2007).

Self-explanation on one hand may allocate a learner's germane 
resource to deal with the intrinsic cognitive load presented by worked 
examples, and may enhance learning. However, on the other hand, self-
explanation instruction may create unnecessary extraneous cognitive 
load and reduce learning. In reviewing the self- explanation effect 
generated by research published before 2000, R. K. Atkinson et al. 
(2000) indicated that more evidence for the self-explanation effect 
during studying worked examples was needed. More recently, Wittwer 
and Renkl (2008) found that instructional explanations often did not 
adapt sufficiently to the learner's characteristics. Furthermore, their 
effectiveness may also depend on the knowledge domain, whether 
it is more conceptual, procedural or reasoning, and the educational 
setting, whether learning takes place in the classroom, with peer tutors 
or in small group discussion. Consequently, adding self-explanations 
to worked examples still needs considerable research to identify the 
conditions under which it might be most effective.
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Summary

This chapter discussed a number of cognitive load effects generated 
by cognitive load theory, especially the goal-free and worked example 
effects. Both strategies (goal-free problems and worked examples) were 
established by the theory to prevent the use of means-ends analysis 
when learning through conventional problem solving. Means-ends 
analysis creates high extraneous cognitive load and hampers learning.

The effectiveness of goal-free problems has been shown using a 
number of various learning tasks. The goal-free effect is obtained by 
removing the goal state of a problem during an acquisition period. 
Learning is facilitated through goal-free problems as cognitive capacity 
is directed to the problem state and associated moves, rather than the 
problem goal and the search to reduce the distance between the problem 
state and the problem goal induced by means-ends analysis.

The effectiveness of worked examples for learning about novel 
information has been shown across many domains. Learning from a set 
of worked examples and problem solving pairs, or completion problems 
(partial worked examples), rather than trying to solve problems without 
guidance, has been shown to be highly effective in the initial stages 
of knowledge acquisition. Nevertheless, the expertise reversal effect 
has demonstrated that worked examples can be ineffective for high 
prior knowledge learners. To overcome the expertise reversal effect, the 
guidance fading effect provides a gradual transition from full worked 
examples to full problem solving instructions as expertise increases. 
Lastly, it is noted that formatting worked examples requires careful 
consideration, as other sources of extraneous cognitive load can be 
created through split-attention and redundant materials. Finally, two 
strategies, variability and self-explanations, were discussed as they have 
been used with worked examples to promote germane cognitive load 
and improve learning.
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Chapter VI

Collaborative Learning

Collaborative learning is an example of a social context that 
commonly allocates three or more students into small groups (Levine 
& Moreland, 2012) where they mutually work together and learn from 
each other while attempting to accomplish a problem solving task (Van 
den Bossche, Gijselaers, Segers, & Kirschner, 2006).

The idea of dividing a classroom into small work groups has been 
applied by many teachers for decades. Recently, school curricula in 
some countries have recommended teachers use group learning. For 
example, the mathematics curriculum used nationally in the USA 
that was developed by the NCTM (National Council of Teachers of 
Mathematics) in 2000, NCTM (2000, p. 10) stated in its teaching 
principles that teachers should encourage “students' discussion and 
collaboration” as well as encouraging students to “construct mathematical 
arguments and respond to others' arguments”. The learning principle in 
the curriculum further stated that:

“Learning with understanding can be further enhanced by class-
room interactions … social interaction can be used to promote the 
recognition of connections among ideas and the reorganization of 
knowledge … in such settings, procedural fluency and conceptual 
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understanding can be developed through problem solving, reason-
ing and argumentation” (NCTM, 2000, p. 13).

In a study comparing traditional curricula and NCTM curricula, 
Latterell (2005) found that the currently used NCTM curricula emphasise 
the use of group work and group discussion methods. Latterell (2005, 
p. 96) asserted that “[t]he curricula are often set up so that the teacher 
introduces a topic then students are responsible for working with each 
other …”. Latterell also observed that the NCTM curricula are widely 
used in many countries, so it can be assumed that many other countries 
have applied this method at schools. In Indonesia, collaboration has been 
a respected value in daily life and it is commonly called “gotong royong” 
which means working together. Recently, the National Curriculum 
of 2013 has included collaborative learning or cooperative learning 
as highly recommended learning method in mathematics classrooms. 
Accordingly, this chapter discusses cognitive psychological aspects need 
to be considered when instructing students to learn in small groups.

In the research literature, a group of students working in a 
collaborative learning environment is often called different names, 
such as: group work, group study, group learning, small groups, or group 
discussions. In a strictly designated setting, it is also known as cooperative 
learning ( Johnson & Johnson, 1994) where studying in groups is based 
on a problem solving approach, applying specific grouping rules and 
rewards, and usually requiring longer learning periods.

Historically, the more usual setting is face-to-face where group 
members physically meet, and communicate directly with each other. 
Grouping settings can also occur in a virtual environment, where group 
members are physically separated, and collaboration is facilitated by 
communication technology devices. More recently, Kim and Baylor 
(2006) proposed learning by an interaction framework using pedagogical 
agents, such as a digital character whom is created using a computer 
program, and interacts with learners.



Chapter VI
Collaborative Learning 87

To give a broad sense of collaborative learning, the theoretical 
frameworks proposed by prominent theorists are initially summarised in 
this chapter. A number of positive and negative factors that contribute 
to cognitive performance (i.e., knowledge acquisition and transfer) are 
also identified.

Why Collaborative Learning: Some Theoretical Frameworks

Collaborative learning has been widely used (Gillies, 2003), well-
researched (Levine & Moreland, 2012) and advocated by many leading 
educators and organisations (e.g., NCTM, 2000; Rosenshine, 2010). In 
particular, social constructivist theory is frequently used to emphasise 
that learning should be facilitated through social and collaborative 
activities where students construct knowledge by interactions with 
others ( Johnson & Johnson, 1994; Schreiber & Valle, 2013).

Underlying social constructivism are the cognitive developmental 
perspectives of Piaget and Vygotsky (Blatchford, Kutnick, Baines, & 
Galton, 2003; E. G. Cohen, 1994; Schreiber & Valle, 2013). Based on 
Piaget's theory (see Chapter 2), cognitive disequilibrium stimulates 
learners to interact within the social context to assimilate, modify 
and accommodate knowledge into more developed constructions. 
According to Piagetian theory, learners are the main actors in knowledge 
construction (Daniels, 2001). In other words, learners have to construct 
knowledge by themselves, and hence teachers should only provide the 
social context and materials that support discussions aiming at cognitive 
conflict resolution (Geary, 1995).

On the other hand, Vygotsky's theory assumes that learning is 
enhanced within social and cultural contexts because these contexts 
influence how learners interpret and understand concepts (Daniels, 
2001). It is argued that interactions within social contexts facilitate 
knowledge construction and, as a consequence, teachers should create a 
collaborative environment where learners can actively communicate and 
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contribute towards constructing meaning (Schreiber & Valle, 2013). 
Vygotsky proposed the concept of the zone of proximal development in 
which learners require scaffolding (assistance) from instructors or more 
able peers to understand meaning that learners cannot comprehend by 
themselves (Daniels, 2001; Schreiber & Valle, 2013).

It is further argued that the zone of proximal development can also 
take place in collaborative contexts, consisting of relatively similar levels 
of expertise (e.g., peers), as long as active collaboration is maintained 
(Schreiber & Valle, 2013). Moreover, Mayer (1999) noted that, 
according to Vygotsky, collaborative learning should be situated in the 
real world of the learners, thus creating more authentic and meaningful 
learning. Nevertheless, both Gillen (2000) and Mayer (1999) argued 
that the implementation of Vygotsky's theory in classroom practices 
may create a number of challenges because not all lessons can occur in 
natural settings.

From a social cognitive learning perspective, Bandura (1986) argued 
that learning is determined by triadic interactions between cognitive 
ability (e.g., attention, retention, reproduction), social behaviour (e.g., 
motivation, self-efficacy) and environment (e.g., learning situations, 
social systems). In particular, Bandura suggested that people have 
evolved to learn from the observation of other people's behaviour. 
Consequently, collaborative learning creates a collective behaviour that, 
to some extent, contributes to individual motivation, which determines 
whether learners acquire observed skills or not.

According to Schmidt et al. (2007), group discussion in a problem 
based learning environment (PBL –a learning strategy advocated by 
many social constructivists) has two functions. First, it activates prior 
knowledge among group members to deal with the learning task. 
Second, it facilitates sharing expertise. Prior knowledge activation and 
sharing expertise are essential to begin collaboration and for learning 
new problem solving skills. Both these points are consistent with a 
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cognitive load theory approach to learning. Access to prior knowledge 
reduces working memory load, and by working together in a group, 
the intrinsic cognitive load may also be reduced because of cognitive 
sharing among group members (Hoogveld, Paas, & Jochems, 2003; 
Schmidt et al., 2007).

It is clear that many educationalists believe that there are strong 
theoretical foundations to support collaborative learning, as it has been 
widely advocated and implemented. It is argued that the role of social 
interactions in learning are vital to foster multiple perspectives and 
representations of knowledge (Schreiber & Valle, 2013). Moreover, 
Blatchford et al. (2003) suggested that group settings are pedagogically 
beneficial for students because their dynamic and dialogic features can 
be expected to affect student engagement in the learning processes. 
Nevertheless, Gillies and Boyle (2010) found that the implementation 
of collaborative learning in classrooms was not always successful. 
In addition, the National Mathematics Advisory Panel, of the US 
Department of Education (2008) reported that the implementation 
of collaborative learning in mathematics classrooms and curricula 
needed further scientific testing. So even though there is strong support 
for collaborative learning, there are several issues associated with its 
successful implementation, which are discussed next.

Improving Collaborative Learning

Many studies have been conducted to identify the factors that 
improve collaborative learning (for reviews, see E. G. Cohen, 1994; 
Kreijns, Kirschner, & Jochems, 2003; Schreiber & Valle, 2013; Van den 
Bossche et al., 2006; Webb, 2009; Weinberger, Stegmann, & Fischer, 
2007). It is generally agreed that collaborative learning requires active 
social interactions, and simply putting students together in a group does 
not guarantee that effective collaborative learning will occur.
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Despite the broad variety of research conducted, many studies 
indicate inconsistent findings when learning outcomes are measured 
(e.g., Barron, 2000; Kester & Paas, 2005). Consequently, efficient 
procedures that can be simply followed by collaborative learning 
instructors have not been easily specified. As stated by Webb (2009, 
p. 21), “... to what extent the teacher's role in promoting collaborative 
dialogue depends on specific features of the classrooms and the students 
in them is largely unknown”. Furthermore, research and theory relevant 
to collaborative learning in authentic classroom conditions has been 
rather limited (Blatchford et al., 2003).

One factor thought to be crucial in facilitating effective collaborative 
environments is task quality. The E. G. Cohen (1994) review found 
that it was important to choose a suitable task to maintain task-related 
interactions. According to Cohen, the most suitable group task is a 
task that cannot be carried out by individuals. Further, the use of open-
ended problems, discovery tasks, or complex problems was thought to 
be necessary in order to stimulate active interactions since they require 
multiple resources and can be solved using different strategies and 
methods. Moreover, Johnson and Johnson (1994), Laughlin, Zander, 
Knievel, and Tan (2003), argued that complex problem solving improves 
interactions because it promotes the exchange of ideas and the discovery 
of underlying principles.

In addition to providing complex problems to solve, it is asserted 
that group members should be informed that they should not complete 
the task alone, but have a responsibility to help other members of the 
group also complete the task ( Johnson & Johnson, 1994). The perception 
of a group member that they have to successfully work together with 
the other group members is called positive interdependence. It is argued 
that by having positive interdependence, group members are forced to 
provide mutual support while working together to maximise the learning 
process ( Johnson & Johnson, 1994, 2002). It is further suggested that 
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positive interdependence can be improved by assessing not only group 
performance, but also individual performance as well as providing group 
rewards based on both individual and group achievements.

An important consideration for effective collaboration is how the 
groups are formed. Some research has shown that allocating close friends 
to a group produces better learning outcomes (Andersson & Rönnberg, 
1995; Hanham & McCormick, 2009; Weldon & Bellinger, 1997). 
Further, heterogeneous groups consisting of mixtures of low ability and 
medium ability students, and high ability and medium ability students, 
have also demonstrated significant achievement (Webb, 1991). In 
contrast, homogenous groupings of high ability or low ability students 
have not been found to be significantly related to better achievement 
(Saleh, Lazonder, & de Jong, 2007). Overall, heterogeneous ability 
groupings, consisting of a balanced number of high, medium and low 
ability students, is favoured by many researchers ( Johnson & Johnson, 
1994; Webb, 1991).

Assigning students to groups with little direction or support does 
not guarantee success. Receiving or giving elaborated explanations is 
considered relevant to improve collaborative learning (Webb, 1991; 
Webb & Mastergeorge, 2003). Therefore, Webb suggested that students 
should be able to request help in such a manner that they will receive 
detailed explanations instead of final correct answers. However, to be 
effective help seekers, training might be needed (Webb, 1991, 2009; 
Webb & Mastergeorge, 2003), since research on giving or listening 
to explanations demonstrated that it did not necessarily improve 
individual performance (Renkl, 1997a; Webb & Mastergeorge, 2003). 
Such training might be advantageous; however, it is also argued that 
when students do not have sufficient prior-knowledge of the to-be-
learned material, giving explanations remains a difficult task.

Additionally, Johnson and Johnson (1994) argued that students 
should be trained specifically on basic cooperation skills, while Schmidt 
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et al. (2007) suggested training was needed in typical collaborative 
skills. Furthermore Laughlin et al. (2003) found that providing initial 
information both about the requirement of the group task and the 
expected group processes was necessary to facilitate effective information 
processing strategies during complex group tasks.

One well-known negative effect of social interaction is called social 
loafing, which is a tendency to exert less effort when working with 
others. For example, Ingham, Levinger, Graves, and Peckham (1974) 
investigated group performances in a physical task (rope pulling), 
finding that individual productivity decreased when co- workers 
were provided. Latane, Williams and Harkins (1979) reported that 
individual performance in clapping and shouting tasks decreased 
when they worked with others, either face-to-face or perceptually 
(i.e., they were blindfolded and told that they performed together 
with others, but actually they performed alone). Social loafing is also 
considered a motivational or coordination loss, and the larger the 
size of the group, the higher the tendency for social loafing (Petty, 
Harkins, & Williams, 1980). Petty et al. found that when in groups, 
students performed fewer positive evaluations than students who 
performed the evaluations alone.

Although exerting lower effort when working with others could 
be seen as individual efficiency, however it is important to note that 
the learning process is an individual construction of knowledge which 
requires individual responsibility to learn. If individual accountability 
(see Johnson & Johnson, 1994) during working in groups is decreased 
through social loafing, it may also lower the individual's learning as 
insufficient mental effort is made towards schema acquisition. The aim 
of learning in collaboration is not only to complete the group task, but 
also to assist each group member in mastering the group task.

Furthermore, Arterberry, Cain, and Chopko (2007) discovered that 
social loafing increased when there was no assessment of the learning 
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process. Furthermore, Harkins and Petty (1982) suggested that social 
loafing can be eliminated by giving more difficult tasks to the group or 
assigning each student to perform different tasks. Similarly, Andersson 
and Rönnberg (1995) also suggested the use of complex tasks to reduce 
negative effects during collaborative work.

Nevertheless, while possessing collaborative skills is important, 
it should be noted that improving collaborative learning is meant to 
improve the quality of individual performance. However, it has been 
reported that much of the research into the effectiveness of collaborative 
learning has not directly tested the performance of individuals, but 
has focused more on group processing aspects, such as motivation 
or self-process attributes as well as the whole group performance (F. 
Kirschner et al., 2009a; Paas & Sweller, 2012). Hence, it is suggested 
that the research should give more emphasise to the measurement of 
performance of each individual after learning in collaborative contexts 
(F. Kirschner et al., 2009a; Paas & Sweller, 2012).

Cognitive Perspective on Collaborative Learning

This chapter is concerned with instructional designs for collaborative 
learning in accord with human cognitive architecture. Although 
cognitive load theory has been largely used to test and establish 
instructional procedures for individual learning, with limited data 
collected on collaborative learning instruction, the theory provides a 
strong theoretical base. Specifically, the recent evolutionary educational 
psychology view of human cognitive architecture can be used to explain 
some of the fundamental underpinnings of collaborative learning and 
thus design effective learning group environments (Paas & Sweller, 
2012; Sweller et al., 2011).

Recently, cognitive load theory researchers have seen collaborative 
learning as an alternative strategy for learning about more complex 
materials that are difficult to learn individually due to working memory 
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restrictions. As such a new cognitive load theory effect has been 
proposed (Sweller et al., 2011). The collective working memory effect 
occurs when individuals obtain higher learning outcomes after learning 
in collaborative contexts compared to individuals who learned alone (F. 
Kirschner et al., 2009a). It is assumed that the intrinsic cognitive load is 
distributed across group members during collaborative learning, freeing 
up more working memory capacity at the individual group member 
level. This does not occur when students are engaged in individual 
learning and have to deal with all the working memory load themselves 
(for reviews, see Paas & Sweller, 2012; Sweller et al., 2011).

The effectiveness of collaborative learning can be seen from the 
evolutionary perspective of cognitive load theory. Paas and Sweller 
(2012) suggested that collaborative learning demonstrates an example 
of the borrowing and reorganising principle. This principle indicates 
that the most effective way to obtain new information is by directly 
borrowing it from an other's long term memory (see Chapter 2). As 
discussed previously, humans have evolved to communicate in everyday 
life, to share and obtain information from each other. Consequently, 
collaborative learning will facilitate learning, as students can share 
information and learn from each other, just like in everyday life (Sweller 
et al., 2011).

However, it should be noted that previous studies have shown that 
effective collaboration does not always occur (for example, see Kreijns 
et al., 2003). Specifically, Paas and Sweller (2012, p. 31) note that 
collaborative interaction requires not only “general communication and 
coordination” like in a natural social context, but also requires “task-
specific communication and coordination” which is more related to 
assigned learning. Similarly, Geary (1995, 2008) argues that collaborative 
learning has similar features to social contexts where students learn 
biologically primary knowledge. Therefore, in collaborative learning, 
students tend to automatically develop general communication and 
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coordination skills (biologically primary knowledge), which might 
not be related to learning, rather than allocating more attention to 
the assigned biologically secondary knowledge (Geary, 1995, 2008). 
Arguably, task-specific communication and coordination is more 
useful; however, it is argued that students need to learn about this 
directly through training (Paas & Sweller, 2012). As a consequence, the 
interaction process in collaborative learning demands some cognitive 
load from each group member, and is known as the transaction cost (F. 
Kirschner et al., 2009a). This can be extraneous load (i.e., when it is 
directed to off-task activities) or germane load (i.e., when it is directed 
to the learning task) ( Janssen, Kirschner, Erkens, Kirschner, & Paas, 
2010). Because working memory is limited when learning complex 
materials, any transaction cost extraneous to learning must be kept 
to a minimum and any transaction cost germane to learning must be 
invested to achieve the expected learning outcomes.

It is argued that providing students with a complex learning task, 
divided among group members, will promote task-specific collaboration 
and facilitate the collective working memory effect (Paas & Sweller, 
2012). When the material is shared among group members, task-specific 
interactions will be required to integrate and fully understand the 
material, and hence direct students' attention to the task. Consequently, 
unnecessary extraneous transaction costs (e.g., off-task conversation, 
social loafing) will be less likely to occur.

When the extraneous transaction cost is kept to a minimum, 
collaboration will facilitate the learning of more-complex materials 
that are hard to learn individually (Paas & Sweller, 2012). Complex 
materials impose a high intrinsic cognitive load, and novice learners 
have limited working memory capacity to learn such material. However, 
when the learning material is shared among several group members, an 
individual is required to process less task-relevant information, which 
is much lower in intrinsic cognitive load because of reduced element 
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interactivity. The remaining working memory resources can then be 
allocated to learning about the important aspects of the materials 
by processing relevant information communicated from other group 
members. Although all group members may share all the thoughts 
discussed, the actual information processing will be sub-divided (see P. 
A. Kirschner, Kirschner, & Janssen, 2014). Hence, through collaboration, 
individuals are more able to learn about complex materials.

Evidence for the collective working memory effect

According to Paas and Sweller (2012), research into the collective 
working memory effect should have two characteristics. Firstly, it 
should be conducted in controlled and randomised experimental 
conditions by isolating the cognitive effects of task complexity 
and minimising the effects of social and motivational factors on 
collaborative learning. Secondly, it should be conducted in a traditional 
face-to-face collaborative learning context. Interaction in this context is 
assumed to require biologically primary knowledge and hence impose 
lower cognitive demand. The research reported below followed these 
requirements.

Initial evidence in support of the collective working memory 
effect was found by F. Kirschner, Paas, and Kirschner (2009b), using 
a high-school biology topic, where an individual learning condition 
was compared to a collaborative learning condition (consisting of 
three group members). During the learning phase, students were 
given problem solving tasks to solve individually or collaboratively. 
For the collaborative learning condition, every member of a group had 
information about one third of the whole task only, and hence sharing 
was required to complete the task; whereas in the individual condition, 
one student was given the whole task to solve. Following the learning 
phase, all students were tested individually with retention and transfer 
tasks. Cognitive load (mental effort) and efficiency measures were also 
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collected (see Paas & van Merriënboer, 1994). No significant differences 
were found between learning conditions on the performance tests or 
cognitive load measures. However, there was a significant interaction 
effect between the learning condition and the test type on the efficiency 
measure. On the transfer test, the collaborative learning condition had 
higher efficiency than the individual learning condition.

F. Kirschner, Paas, and Kirschner (2011) continued their 
investigation by examining the impact of collaborative learning on 
low-complexity and high- complexity tasks. Again using high school 
biology, low and high-complexity problem solving tasks were used to 
compare learning individually with learning collaboratively (using triad 
grouping and distributing one third of the task information to each 
member). Interaction effects were found between task- complexity 
and learning conditions on performance, mental effort and efficiency 
measures for the transfer test. For the low-complexity task, there was 
no significant difference between learning conditions; however, for the 
high-complexity task, the collaborative learning condition was superior 
to the individual learning condition.

The effect of high-complexity tasks on collaborative learning was 
also investigated by Zhang, Ayres, and Chan (2011) using a quasi-
experimental design. Two collaborative conditions were formed by 
grouping students together to complete a take-home assignment (i.e., 
designing a personal homepage). One condition was task-based (a 
theme was assigned) and the other an open-ended project (the group 
decided their own theme, content and arrangement). Each group 
member was required to develop at least five web pages and then they 
worked collaboratively to link all the web pages together in a unified 
homepage. An individual context was also created, by assigning a cohort 
of students to complete the same assignment individually (the assigned 
theme). The open-ended collaborative learning context demonstrated 
higher performance and lower cognitive load compared to the individual 
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learning context and the task-based collaborative learning context. 
Notably information about the task was not subdivided across group 
members as used by F. Kirschner, et al. (2009b, 2011) (consequently, 
there was no need of combining prior- knowledge among group 
members). Nevertheless, it can be argued that in the Zhang et al. study 
active collaboration was achieved since students were not only required 
to complete the assignment in the given period, but there was sufficient 
time for students to develop social interactions outside the classrooms, 
which might be a more natural setting. To reinforce the need for 
collaboration, students working in groups were also required to give 
presentations to their peers at the end of the learning period.

More evidence of the importance of task complexity was collected by 
F. Kirschner, Paas, Kirschner, and Janssen (2011). In this study, biology 
tasks were studied in both individual and collaborative learning contexts 
either by using worked examples or through conventional problem 
solving instructional formats. The collaborative groups were structured 
as in the previous studies (Kirschner, et al., 2009b, 2011), where each 
group member was presented with one third of the material (one-third 
of the information of the problem solving task for the problem solving 
group, and one-third of the worked examples for the worked example 
group) and hence sharing of information was required. The individual 
learners were given either full worked examples or problem solving 
tasks. During the learning phase, students in the worked example 
conditions were asked to study three worked examples only (with no 
paired exercise problems), and equivalently, students in the problem 
solving conditions were asked to solve the three problems without 
instruction. The results indicated that overall, there was a main effect of 
social context: the collaborative conditions led to significantly higher 
performance and efficiency than the individual conditions on the test. 
There was an interaction effect between the instructional format and 
the social context on both performance and efficiency. It was shown 



Chapter VI
Collaborative Learning 99

that for the collaborative groups, learning by problem solving was more 
efficient than worked examples. For individuals, learning by worked 
examples was more effective than problem solving. The authors argued 
that high task complexity imposed not only by the intrinsic nature of the 
task, but also by the instructional format should be taken into account 
to improve collaborative learning. These results confirmed previous 
findings by F. Kirschner, Paas, and Kirschner (2011), that the efficiency 
of collaborative learning was increased by presenting high-complexity 
problem solving.

A previous study by Retnowati et al. (2010) compared worked 
examples with problem solving strategies in collaborative settings 
using a high school geometry task. Retnowati et al. found that worked 
examples benefited both individuals and collaborative groups for 
both numeric and reasoning scores on similar and transfer tests. In 
addition, a marginal interaction effect between worked examples and 
collaborative learning was found for the reasoning score. The results 
showed that the effect of worked examples on reasoning was stronger 
for collaborative learning. However, it is important to note that there 
was no task-distribution in Retnowati et al.'s study, as group members 
were not required to share discrete sections of knowledge. In other 
words, collaborative learning could benefit by worked examples when 
each group member had the same worked examples to study together 
(i.e., to discuss the same materials with essentially the same knowledge 
base). Overall, this study, consistent with the worked example effect, 
found no evidence for the effectiveness of problem solving strategy 
when learned individually or collaboratively.

It is notable that the evidence for the collective working memory 
effect was found through the implementation of very structured and 
scripted collaborative groupings. Firstly, each group member received 
only a portion of the learning material. This setting is not common in 
regular classrooms where students usually receive the same learning 
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material. Secondly, the group members were not allowed to use pencil/
pen and paper while learning to prevent offloading any working 
memory burden, thus controlling this factor. The collaboration process 
relied heavily on verbal communication. Consequently, F. Kirschner, 
Paas, Kirschner, et al. (2011, p. 597) concluded that “it is not clear to 
what extent the results obtained in this study can be generalised to real 
classroom settings”.

Nevertheless, recent research has examined which collaborative 
structure is more effective. It was found that when collaboration among 
group members is a must because of each group member has to share their 
knowledge to learn the given material then the individual performance 
is better compared to when collaboration is simply encouraged as their 
support of learning (Retnowati, Ayres, & Sweller, 2015). The “must 
share knowledge” group structure used a jigsaw approach in structuring 
the collaborative group (i.e. group members are divided and have 
different knowledge base), and the “encouraged” group structure used 
the common structure (i.e. all students have the same knowledge base). 
In this research, the learning material is Year 7 geometry called the 
application of Pythagoras' theorem to find the area of a triangle.

Task: Find the area of these figure (not to scale)

Figure 15. Example of problem solving requires Pythagoras' 
theorem and the concept of triangle's area
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The learning phase was divided into two stages. In the jigsaw 
groupings, half students learned the basic knowledge of triangle area 
and the other half the basic knowledge of Pythagoras' theorem for 
the first learning stage. The learning material was developed using a 
worked example approach, where students were individually studying 
by examples and completing similar problem solving. In the common 
groupings, all students learned both material but the quantity of the 
practice was a half of these in the jigsaw group. In the second learning 
stage, all students learned a more complex material which is the 
application of the Pythagoras' theorem to calculate the area of triangle, 
in groups. The learning material was based on problem solving. In the 
jigsaw group, students with Pythagoras' theorem knowledge base had 
to share with students with the triangle area knowledge base. Without 
this, they would not be able to handle the learning material in the 
collaborative groups.

Summary

This chapter described some of the theoretical foundations in 
support of collaborative learning. Many leading educators encourage 
its use in classrooms, although it is acknowledged that the research 
does not consistently demonstrate its effectiveness. Even though, as F. 
Kirschner et al. (2009a) point out, there is a lack of empirical studies 
supporting group effectiveness on individual learners, collaborative 
learning seems highly appealing.

Collaborative learning is an example of a social context that is 
formed in a classroom by allocating students to study a learning topic 
together. Research suggests that the effectiveness of working together in 
a group occurs under certain conditions, such as when group members 
show mutual support by elaborating explanations. Further, it is suggested 
that teachers or instructors play an important role in preparing suitable 
group compositions. In addition to this, providing complex problem 
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solving is necessary for encouraging positive interdependence as well 
as reducing the negative effect of working in groups, such as the social 
loafing effect.

From a cognitive load theory perspective, social interaction is 
also seen as a possible context to specifically learn complex tasks, as 
found in many mathematics topics, which an individual would find 
difficult to learn alone because of a limited working memory capacity. 
By working in groups working memory load can be offset by sharing 
the task. The collective working memory effect occurs when a student 
performs better after learning in a collaborative context rather than 
learning individually. The main evidence for this effect has been found 
when members are required to share discrete sections of information 
and combine them to accomplish the group task. More importantly, the 
collective working memory effect has been shown to be effective when 
complex problem solving is used.
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